【Codeforces】 CF582D Number of Binominal Coefficients

2023-10-29 00:12

本文主要是介绍【Codeforces】 CF582D Number of Binominal Coefficients,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

题目链接

CF方向
Luogu方向

题目解法

看到 p α ∣ ( n k ) p^{\alpha} | \binom{n}{k} pα(kn) ,首先想到 k u m m e r kummer kummer 定理,那么限制即为 n − k n-k nk k k k 做加法在 p p p 进制下的进位数 ≥ α \ge \alpha α
然后就是一个显然的数位 d p dp dp
因为进位从前往后数位 d p dp dp 不太好考虑,所以我们考虑从后往前做,然后多记录一维 0 / 1 / 2 0/1/2 0/1/2
我的状态是 f i , j , 0 / 1 , 0 / 1 / 2 f_{i,j,0/1,0/1/2} fi,j,0/1,0/1/2 表示后 i i i 位有 j j j 个进位(不包括第 i i i 位的),这一位是否进位,后面 i i i n n n A A A 的关系(0 表示 n < A n<A n<A,1 表示 n = A n=A n=A,2 表示 n > A n>A n>A
因为我们把 n , k n,k n,k 变成了 n − k n-k nk k k k,所以天然保证了 n ≥ k n\ge k nk,不需要考虑 n , k n,k n,k 的大小关系
直接 d p dp dp 即可,实现的有些烦,但也不知道可以优化什么了
时间复杂度 O ( n 2 ) O(n^2) O(n2)

#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
const int N=4100,P=1e9+7;
int p,a,f[2][N][2][3];
LL A[N],B[N];
// int g[P];//g[i]表示a+b<=i的方案数(a,b无序)
char str[N];
inline int read(){int FF=0,RR=1;char ch=getchar();for(;!isdigit(ch);ch=getchar()) if(ch=='-') RR=-1;for(;isdigit(ch);ch=getchar()) FF=(FF<<1)+(FF<<3)+ch-48;return FF*RR;
}
inline void inc(int &x,LL y){ x=(x+y)%P;}
int g(int x){if(x<0) return 0;if(x<p) return (1ll*(x+2)*(x+1)/2)%P;x=p*2-1-x;x=1ll*p*p%P-(1ll*x*(x-1)/2)%P;return x<0?x+P:x;
}
int main(){p=read(),a=read();scanf("%s",str+1);int len=strlen(str+1);for(int i=1;i<=len;i++) A[i]=str[len-i+1]-48;int n=0;for(int i=len;i>=1;i--){for(int j=1;j<N;j++) B[j]*=10;B[1]+=A[i];for(int j=1;j<N;j++) if(B[j]>=p) B[j+1]+=B[j]/p,B[j]%=p;}for(int i=1;i<N;i++) A[i]=B[i];for(int i=1;i<N;i++) if(A[i]) n=i;reverse(A+1,A+n+1);f[(n+1)&1][0][0][1]=1;for(int i=n+1;i>1;i--){int c=A[i-1];int g_c=g(c);int g_c_1=g(c-1);int g_c_2=g(c-2);int g_p_1=g(p-1);int g_p_2=g(p-2);int g_p_c=g(p+c);int g_p_c_1=g(p+c-1);int g_p_c_2=g(p+c-2);int g_2p_2=g(p*2-2);int g_2p_3=g(p*2-3);memset(f[~i&1],0,sizeof(f[~i&1]));for(int j=0;j<=n-i+1;j++){//calc f[~i&1][j][0][0]inc(f[~i&1][j][0][0],1ll*f[i&1][j][0][0]*g_c);if(c){for(int t:{1,2}) inc(f[~i&1][j][0][0],1ll*f[i&1][j][0][t]*g_c_1);if(j){inc(f[~i&1][j][0][0],1ll*f[i&1][j-1][1][0]*g_c_1);if(c>1) for(int t:{1,2}) inc(f[~i&1][j][0][0],1ll*f[i&1][j-1][1][t]*g_c_2);}}//calc f[~i&1][j][0][1]if(!c) inc(f[~i&1][j][0][1],1ll*f[i&1][j][0][1]*g_c);else inc(f[~i&1][j][0][1],1ll*f[i&1][j][0][1]*(g_c-g_c_1+P));if(j&&c) inc(f[~i&1][j][0][1],1ll*f[i&1][j-1][1][1]*(g_c_1-g_c_2+P));//calc f[~i&1][j][0][2]for(int t:{0,1}) inc(f[~i&1][j][0][2],1ll*f[i&1][j][0][t]*(g_p_1-g_c+P));inc(f[~i&1][j][0][2],1ll*f[i&1][j][0][2]*(g_p_1-g_c_1+P));if(j){for(int t:{0,1}) inc(f[~i&1][j][0][2],1ll*f[i&1][j-1][1][t]*(g_p_2-g_c_1+P));inc(f[~i&1][j][0][2],1ll*f[i&1][j-1][1][2]*(g_p_2-g_c_2+P));}//calc f[~i&1][j][1][0]inc(f[~i&1][j][1][0],1ll*f[i&1][j][0][0]*(g_p_c-g_p_1+P));for(int t:{1,2}) inc(f[~i&1][j][1][0],1ll*f[i&1][j][0][t]*(g_p_c_1-g_p_1+P));if(j){inc(f[~i&1][j][1][0],1ll*f[i&1][j-1][1][0]*(g_p_c_1-g_p_2+P));for(int t:{1,2}) inc(f[~i&1][j][1][0],1ll*f[i&1][j-1][1][t]*(g_p_c_2-g_p_2+P));}//calc f[~i&1][j][1][1]inc(f[~i&1][j][1][1],1ll*f[i&1][j][0][1]*(g_p_c-g_p_c_1+P));if(j) inc(f[~i&1][j][1][1],1ll*f[i&1][j-1][1][1]*(g_p_c_1-g_p_c_2+P));//calc f[~i&1][j][1][2]for(int t:{0,1}) inc(f[~i&1][j][1][2],1ll*f[i&1][j][0][t]*(g_2p_2-g_p_c+P));inc(f[~i&1][j][1][2],1ll*f[i&1][j][0][2]*(g_2p_2-g_p_c_1+P));if(j){for(int t:{0,1}) inc(f[~i&1][j][1][2],1ll*f[i&1][j-1][1][t]*(g_2p_2-g_p_c_1+P));inc(f[~i&1][j][1][2],1ll*f[i&1][j-1][1][2]*(g_2p_2-g_p_c_2+P));}}}int ans=0;for(int i=a;i<=n;i++) inc(ans,1ll*f[1][i][0][0]+f[1][i][0][1]);printf("%d\n",ans);fprintf(stderr,"%d ms\n",int(1e3*clock()/CLOCKS_PER_SEC));return 0;
}
/*
f[i][j][0/1][0/1/2]:到第i位,后j位已经填好且进位了j次,这一位是否进位,n后面j位和A的关系(0小于,1等于,2大于)
*/

这篇关于【Codeforces】 CF582D Number of Binominal Coefficients的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/296930

相关文章

usaco 1.2 Name That Number(数字字母转化)

巧妙的利用code[b[0]-'A'] 将字符ABC...Z转换为数字 需要注意的是重新开一个数组 c [ ] 存储字符串 应人为的在末尾附上 ‘ \ 0 ’ 详见代码: /*ID: who jayLANG: C++TASK: namenum*/#include<stdio.h>#include<string.h>int main(){FILE *fin = fopen (

Codeforces Round #240 (Div. 2) E分治算法探究1

Codeforces Round #240 (Div. 2) E  http://codeforces.com/contest/415/problem/E 2^n个数,每次操作将其分成2^q份,对于每一份内部的数进行翻转(逆序),每次操作完后输出操作后新序列的逆序对数。 图一:  划分子问题。 图二: 分而治之,=>  合并 。 图三: 回溯:

Codeforces Round #261 (Div. 2)小记

A  XX注意最后输出满足条件,我也不知道为什么写的这么长。 #define X first#define Y secondvector<pair<int , int> > a ;int can(pair<int , int> c){return -1000 <= c.X && c.X <= 1000&& -1000 <= c.Y && c.Y <= 1000 ;}int m

Codeforces Beta Round #47 C凸包 (最终写法)

题意慢慢看。 typedef long long LL ;int cmp(double x){if(fabs(x) < 1e-8) return 0 ;return x > 0 ? 1 : -1 ;}struct point{double x , y ;point(){}point(double _x , double _y):x(_x) , y(_y){}point op

Codeforces Round #113 (Div. 2) B 判断多边形是否在凸包内

题目点击打开链接 凸多边形A, 多边形B, 判断B是否严格在A内。  注意AB有重点 。  将A,B上的点合在一起求凸包,如果凸包上的点是B的某个点,则B肯定不在A内。 或者说B上的某点在凸包的边上则也说明B不严格在A里面。 这个处理有个巧妙的方法,只需在求凸包的时候, <=  改成< 也就是说凸包一条边上的所有点都重复点都记录在凸包里面了。 另外不能去重点。 int

题目1380:lucky number

题目1380:lucky number 时间限制:3 秒 内存限制:3 兆 特殊判题:否 提交:2839 解决:300 题目描述: 每个人有自己的lucky number,小A也一样。不过他的lucky number定义不一样。他认为一个序列中某些数出现的次数为n的话,都是他的lucky number。但是,现在这个序列很大,他无法快速找到所有lucky number。既然

Codeforces 482B 线段树

求是否存在这样的n个数; m次操作,每次操作就是三个数 l ,r,val          a[l] & a[l+1] &......&a[r] = val 就是区间l---r上的与的值为val 。 也就是意味着区间[L , R] 每个数要执行 | val 操作  最后判断  a[l] & a[l+1] &......&a[r] 是否= val import ja

Jenkins 通过 Version Number Plugin 自动生成和管理构建的版本号

步骤 1:安装 Version Number Plugin 登录 Jenkins 的管理界面。进入 “Manage Jenkins” -> “Manage Plugins”。在 “Available” 选项卡中搜索 “Version Number Plugin”。选中并安装插件,完成后可能需要重启 Jenkins。 步骤 2:配置版本号生成 打开项目配置页面。在下方找到 “Build Env

Codeforces Round 971 (Div. 4) (A~G1)

A、B题太简单,不做解释 C 对于 x y 两个方向,每一个方向至少需要 x / k 向上取整的步数,取最大值。 由于 x 方向先移动,假如 x 方向需要的步数多于 y 方向的步数,那么最后 y 方向的那一步就不需要了,答案减 1 代码 #include <iostream>#include <algorithm>#include <vector>#include <string>

【Hdu】Minimum Inversion Number(逆序,线段树)

利用线段树在nlogn的时间复杂度内求一段数的逆序。 由于给的序列是由0 ~ n -1组成的,求出初始的逆序之后可以递推出移动之后的逆序数。 #include<cstdio>#include<iostream>#include<cstring>#include<algorithm>using namespace std;typedef long long LL;const in