怒刷LeetCode的第28天(Java版)

2023-10-28 20:01
文章标签 java leetcode 28 怒刷

本文主要是介绍怒刷LeetCode的第28天(Java版),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

第一题

题目来源

题目内容

解决方法

方法一:动态规划

方法二:迭代

方法三:斐波那契数列公式

第二题

题目来源

题目内容

解决方法

方法一:栈

方法二:路径处理类

方法三:正则表达式

方法四:字符串处理

第三题

题目来源

题目内容

解决方法

方法一:动态规划


第一题

题目来源

70. 爬楼梯 - 力扣(LeetCode)

题目内容

解决方法

方法一:动态规划

可以使用动态规划的方法来解决这个问题。假设要爬到第n阶楼梯,那么可以从第n-1阶楼梯爬一步上来,或者从第n-2阶楼梯爬两步上来。因此,到达第n阶楼梯的方法数等于到达第n-1阶楼梯的方法数加上到达第n-2阶楼梯的方法数。

首先初始化前两个楼梯的方法数,即dp[0]=1和dp[1]=1。然后从第3个楼梯开始,通过迭代计算每个楼梯的方法数,直到第n个楼梯。

class Solution {
public int climbStairs(int n) {if (n <= 1) {return 1;}int[] dp = new int[n + 1];dp[0] = 1;dp[1] = 1;for (int i = 2; i <= n; i++) {dp[i] = dp[i - 1] + dp[i - 2];}return dp[n];
}
}

复杂度分析:

  • 这个算法的时间复杂度是O(n),其中n是楼梯的阶数。这是因为我们需要计算从第2阶楼梯到第n阶楼梯的方法数,每次计算都需要常数时间。
  • 空间复杂度是O(n),因为我们使用一个大小为n+1的数组来存储每个楼梯的方法数。如果只需要存储前两个楼梯的方法数,空间复杂度可以优化为O(1)。

总结起来,这个算法是相当高效的,可以在合理的时间内解决规模较大的问题。

LeetCode运行结果:

方法二:迭代

除了动态规划,还可以使用迭代的方法来解决这个问题。迭代方法的思路是从前往后计算每个楼梯的方法数,并利用一个变量来保存前两个楼梯的方法数,以便计算当前楼梯的方法数。

class Solution {
public int climbStairs(int n) {if (n <= 1) {return 1;}int prev1 = 1; // 到达前一个楼梯的方法数int prev2 = 1; // 到达前两个楼梯的方法数int current = 0; // 当前楼梯的方法数for (int i = 2; i <= n; i++) {current = prev1 + prev2;prev2 = prev1;prev1 = current;}return current;
}
}

复杂度分析:

  • 时间复杂度: 在迭代方法中,我们使用一个循环来计算每个楼梯的方法数,循环执行了n-2次(从第3个楼梯开始计算)。因此,时间复杂度为O(n)。
  • 空间复杂度: 在迭代方法中,我们只使用了三个变量:prev1、prev2和current来保存楼梯的方法数。这三个变量的空间占用是常量级别的,与输入规模n无关。因此,空间复杂度为O(1)。

综上所述,迭代方法的时间复杂度为O(n),空间复杂度为O(1)。

LeetCode运行结果:

方法三:斐波那契数列公式

除了动态规划和迭代,还可以使用斐波那契数列公式的方法来解决爬楼梯问题。

斐波那契数列公式是一个通用的公式,可以用来计算斐波那契数列中任意一项的值。在爬楼梯问题中,我们可以利用斐波那契数列公式来计算到达第n阶楼梯的方法数。

具体步骤如下:

  1. 定义常量phi为(1 + sqrt(5)) / 2,定义常量psi为(1 - sqrt(5)) / 2。
  2. 利用斐波那契数列公式,计算第n+1项斐波那契数列的值,即Fn+1 = (phi^(n+1) - psi^(n+1)) / sqrt(5)。
  3. 最后,到达第n阶楼梯的方法数即为Fn+1。
class Solution {
public int climbStairs(int n) {double phi = (1 + Math.sqrt(5)) / 2;double psi = (1 - Math.sqrt(5)) / 2;double fn = (Math.pow(phi, n + 1) - Math.pow(psi, n + 1)) / Math.sqrt(5);return (int) Math.round(fn);
}
}

复杂度分析:

  • 时间复杂度:O(1),直接使用斐波那契数列公式计算结果。
  • 空间复杂度:O(1),只需要常量级的额外空间。

LeetCode运行结果:

第二题

题目来源

71. 简化路径 - 力扣(LeetCode)

题目内容

解决方法

方法一:栈

class Solution {public String simplifyPath(String path) {Deque<String> stack = new LinkedList<>();String[] components = path.split("/");for (String component : components) {if (component.equals(".") || component.isEmpty()) {// 当前目录,忽略} else if (component.equals("..")) {// 上级目录,弹出栈顶元素if (!stack.isEmpty()) {stack.pop();}} else {// 其他目录,入栈stack.push(component);}}StringBuilder sb = new StringBuilder();while (!stack.isEmpty()) {sb.append("/");sb.append(stack.pollLast());}return sb.length() == 0 ? "/" : sb.toString();}
}

思路解析:

  1. 将路径按照"/"分割成多个组件,存储在数组components中。
  2. 遍历components数组,对于每个组件进行如下处理:
    • 如果是"."或空字符串,表示当前目录,忽略即可。
    • 如果是"..",表示上级目录,将栈顶元素弹出。
    • 否则,表示其他目录,将其入栈。
  3. 遍历完所有组件后,将栈中元素依次弹出,拼接成简化后的路径。注意,由于栈是先进后出的,所以需要使用pollLast方法依次弹出栈顶元素。

复杂度分析:

时间复杂度分析:

  • 字符串的split方法的时间复杂度为O(n),其中n是路径的长度。因为需要遍历整个路径字符串,并根据"/"进行分割。
  • 遍历components数组的时间复杂度为O(m),其中m是路径中的组件数量。最坏情况下,路径中的组件数量与路径长度相等。
  • 栈的操作(入栈和出栈)的时间复杂度为O(1)。

综上所述,总的时间复杂度为O(n + m)。

空间复杂度分析:

  • components数组的空间复杂度为O(m),其中m是路径中的组件数量。
  • 栈的空间复杂度最坏情况下为O(m),即路径中每个组件都不同。
  • StringBuilder的空间复杂度为O(n),其中n是路径的长度。

综上所述,总的空间复杂度为O(n + m)。

LeetCode运行结果:

方法二:路径处理类

除了栈,还可以使用Java的路径处理类Path和Paths来实现简化路径。

思路解析:

  1. 使用Paths.get方法将路径字符串转换为Path对象。
  2. 遍历Path对象中的每个组件(即目录名或文件名)。
  3. 如果当前组件不是"."或"..",表示是有效的目录名或文件名,将其拼接到结果字符串中。
  4. 如果当前组件是"..",表示需要返回上级目录,将结果字符串中最后一个目录名删除即可。
import java.nio.file.Path;
import java.nio.file.Paths;class Solution {public String simplifyPath(String path) {Path p = Paths.get(path);StringBuilder sb = new StringBuilder();for (Path component : p) {if (!component.toString().equals("..") && !component.toString().equals(".")) {sb.append("/");sb.append(component.toString());} else if (component.toString().equals("..")) {int len = sb.length();if (len > 1) {sb.delete(sb.lastIndexOf("/"), len);}}}return sb.length() == 0 ? "/" : sb.toString();}
}

复杂度分析:

时间复杂度分析:

  • Paths.get方法的时间复杂度为O(n),其中n是路径的长度。
  • 遍历Path对象中的每个组件的时间复杂度为O(m),其中m是路径中的组件数量。
  • StringBuilder的操作的时间复杂度为O(n),其中n是路径的长度。

综上所述,总的时间复杂度为O(n + m)。

空间复杂度分析:

  • Path对象的空间复杂度为O(m),其中m是路径中的组件数量。
  • StringBuilder的空间复杂度为O(n),其中n是路径的长度。

综上所述,总的空间复杂度为O(n + m)。

LeetCode运行结果:

方法三:正则表达式

除了栈和Java的路径处理类,还可以使用正则表达式来实现简化路径。

思路解析:

  1. 将路径按照"/"分割成多个组件,存储在数组components中。
  2. 遍历components数组,对于每个组件进行如下处理:
    • 如果是"."或空字符串,表示当前目录或空目录,忽略即可。
    • 如果是"..",表示上级目录,将结果字符串中最后一个目录名删除即可。
    • 否则,表示其他目录,将其拼接到结果字符串中。
  3. 遍历完所有组件后,返回结果字符串。注意,如果结果字符串为空,则表示路径为根目录,需要返回"/"。
class Solution {public String simplifyPath(String path) {String[] components = path.split("/");StringBuilder sb = new StringBuilder();for (String component : components) {if (component.equals("..")) {// 返回上级目录,将结果字符串中最后一个目录名删除即可。int len = sb.length();if (len > 1) {sb.delete(sb.lastIndexOf("/"), len);}} else if (!component.equals(".") && !component.isEmpty()) {// 忽略当前目录和空目录,其他目录拼接到结果字符串中。sb.append("/");sb.append(component);}}return sb.length() == 0 ? "/" : sb.toString();}
}

复杂度分析:

时间复杂度分析:

  • 字符串的split方法和StringBuilder的append方法都是线性时间复杂度的,所以总时间复杂度为O(n),其中n是路径的长度。

空间复杂度分析:

  • components数组的空间复杂度为O(m),其中m是路径中的组件数量。
  • StringBuilder的空间复杂度为O(n),其中n是路径的长度。

综上所述,总的空间复杂度为O(n + m)。

LeetCode运行结果:

方法四:字符串处理

除了栈、Java的路径处理类、正则表达式,还可以使用字符串处理方法来实现简化路径。

思路解析:

  1. 使用两个指针i和j来遍历路径字符串path。
  2. 当指针i在路径中遇到连续的斜杠时,跳过这些多余的斜杠。
  3. 当指针i遇到非斜杠字符时,将其作为目录名的一部分,存储在StringBuilder对象dirName中。
  4. 检查dirName中的目录名:
    • 如果是"."或空字符串,表示当前目录或空目录,忽略即可。
    • 如果是"..",表示上级目录,将结果字符串中最后一个目录名删除即可。
    • 否则,表示其他目录,将其拼接到结果字符串中。
  5. 继续遍历路径字符串,直到遍历完所有字符。
  6. 返回结果字符串。如果结果字符串为空,则表示路径为根目录,需要返回"/"。
class Solution {public String simplifyPath(String path) {StringBuilder sb = new StringBuilder();int n = path.length();int i = 0;while (i < n) {// 跳过多余的斜杠while (i < n && path.charAt(i) == '/') {i++;}// 获取当前目录名StringBuilder dirName = new StringBuilder();while (i < n && path.charAt(i) != '/') {dirName.append(path.charAt(i));i++;}// 处理当前目录名String name = dirName.toString();if (name.equals("..")) {// 返回上级目录,将结果字符串中最后一个目录名删除即可。int len = sb.length();if (len > 1) {sb.delete(sb.lastIndexOf("/"), len);}} else if (!name.equals(".") && !name.isEmpty()) {// 忽略当前目录和空目录,其他目录拼接到结果字符串中。sb.append("/");sb.append(name);}}return sb.length() == 0 ? "/" : sb.toString();}
}

复杂度分析:

时间复杂度分析:

  • 遍历路径字符串的过程是线性时间复杂度的,所以总时间复杂度为O(n),其中n是路径的长度。

空间复杂度分析:

  • StringBuilder的空间复杂度为O(n),其中n是路径的长度。

综上所述,总的空间复杂度为O(n)。

LeetCode运行结果:

第三题

题目来源

72. 编辑距离 - 力扣(LeetCode)

题目内容

解决方法

方法一:动态规划

这是一道典型的动态规划问题。

定义状态:dp[i][j]表示将word1的前i个字符转换为word2的前j个字符所需的最少操作数。

状态转移方程:

  • 当word1[i] == word2[j]时,不需要进行任何操作,dp[i][j] = dp[i-1][j-1]。

  • 当word1[i] != word2[j]时,可以进行三种操作:

    • 插入一个字符:dp[i][j] = dp[i][j-1] + 1。
    • 删除一个字符:dp[i][j] = dp[i-1][j] + 1。
    • 替换一个字符:dp[i][j] = dp[i-1][j-1] + 1。

最终结果为dp[m][n],其中m和n分别是word1和word2的长度。

class Solution {
public int minDistance(String word1, String word2) {int m = word1.length();int n = word2.length();// 创建动态规划数组int[][] dp = new int[m+1][n+1];// 初始化边界条件for (int i = 0; i <= m; i++) {dp[i][0] = i;}for (int j = 0; j <= n; j++) {dp[0][j] = j;}// 动态规划求解for (int i = 1; i <= m; i++) {for (int j = 1; j <= n; j++) {if (word1.charAt(i-1) == word2.charAt(j-1)) {dp[i][j] = dp[i-1][j-1];} else {dp[i][j] = Math.min(dp[i-1][j-1], Math.min(dp[i][j-1], dp[i-1][j])) + 1;}}}return dp[m][n];
}
}

复杂度分析:

该算法的时间复杂度为O(m*n),其中m和n分别是word1和word2的长度。

在动态规划求解过程中,需要填充一个大小为(m+1)(n+1)的二维数组dp。对于每个位置(i, j),都需要通过比较word1.charAt(i-1)和word2.charAt(j-1)来确定操作的类型。因此,总共需要进行mn次比较和计算。

空间复杂度方面,需要额外开辟一个大小为(m+1)(n+1)的二维数组dp来保存中间结果。因此,空间复杂度也为O(mn)。

综上所述,该算法的时间复杂度和空间复杂度均为O(m*n)。

LeetCode运行结果:

这篇关于怒刷LeetCode的第28天(Java版)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/295614

相关文章

Java实现检查多个时间段是否有重合

《Java实现检查多个时间段是否有重合》这篇文章主要为大家详细介绍了如何使用Java实现检查多个时间段是否有重合,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录流程概述步骤详解China编程步骤1:定义时间段类步骤2:添加时间段步骤3:检查时间段是否有重合步骤4:输出结果示例代码结语作

Java中String字符串使用避坑指南

《Java中String字符串使用避坑指南》Java中的String字符串是我们日常编程中用得最多的类之一,看似简单的String使用,却隐藏着不少“坑”,如果不注意,可能会导致性能问题、意外的错误容... 目录8个避坑点如下:1. 字符串的不可变性:每次修改都创建新对象2. 使用 == 比较字符串,陷阱满

Java判断多个时间段是否重合的方法小结

《Java判断多个时间段是否重合的方法小结》这篇文章主要为大家详细介绍了Java中判断多个时间段是否重合的方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录判断多个时间段是否有间隔判断时间段集合是否与某时间段重合判断多个时间段是否有间隔实体类内容public class D

IDEA编译报错“java: 常量字符串过长”的原因及解决方法

《IDEA编译报错“java:常量字符串过长”的原因及解决方法》今天在开发过程中,由于尝试将一个文件的Base64字符串设置为常量,结果导致IDEA编译的时候出现了如下报错java:常量字符串过长,... 目录一、问题描述二、问题原因2.1 理论角度2.2 源码角度三、解决方案解决方案①:StringBui

Java覆盖第三方jar包中的某一个类的实现方法

《Java覆盖第三方jar包中的某一个类的实现方法》在我们日常的开发中,经常需要使用第三方的jar包,有时候我们会发现第三方的jar包中的某一个类有问题,或者我们需要定制化修改其中的逻辑,那么应该如何... 目录一、需求描述二、示例描述三、操作步骤四、验证结果五、实现原理一、需求描述需求描述如下:需要在

Java中ArrayList和LinkedList有什么区别举例详解

《Java中ArrayList和LinkedList有什么区别举例详解》:本文主要介绍Java中ArrayList和LinkedList区别的相关资料,包括数据结构特性、核心操作性能、内存与GC影... 目录一、底层数据结构二、核心操作性能对比三、内存与 GC 影响四、扩容机制五、线程安全与并发方案六、工程

JavaScript中的reduce方法执行过程、使用场景及进阶用法

《JavaScript中的reduce方法执行过程、使用场景及进阶用法》:本文主要介绍JavaScript中的reduce方法执行过程、使用场景及进阶用法的相关资料,reduce是JavaScri... 目录1. 什么是reduce2. reduce语法2.1 语法2.2 参数说明3. reduce执行过程

如何使用Java实现请求deepseek

《如何使用Java实现请求deepseek》这篇文章主要为大家详细介绍了如何使用Java实现请求deepseek功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1.deepseek的api创建2.Java实现请求deepseek2.1 pom文件2.2 json转化文件2.2

Java调用DeepSeek API的最佳实践及详细代码示例

《Java调用DeepSeekAPI的最佳实践及详细代码示例》:本文主要介绍如何使用Java调用DeepSeekAPI,包括获取API密钥、添加HTTP客户端依赖、创建HTTP请求、处理响应、... 目录1. 获取API密钥2. 添加HTTP客户端依赖3. 创建HTTP请求4. 处理响应5. 错误处理6.

Spring AI集成DeepSeek的详细步骤

《SpringAI集成DeepSeek的详细步骤》DeepSeek作为一款卓越的国产AI模型,越来越多的公司考虑在自己的应用中集成,对于Java应用来说,我们可以借助SpringAI集成DeepSe... 目录DeepSeek 介绍Spring AI 是什么?1、环境准备2、构建项目2.1、pom依赖2.2