怒刷LeetCode的第28天(Java版)

2023-10-28 20:01
文章标签 java leetcode 28 怒刷

本文主要是介绍怒刷LeetCode的第28天(Java版),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

第一题

题目来源

题目内容

解决方法

方法一:动态规划

方法二:迭代

方法三:斐波那契数列公式

第二题

题目来源

题目内容

解决方法

方法一:栈

方法二:路径处理类

方法三:正则表达式

方法四:字符串处理

第三题

题目来源

题目内容

解决方法

方法一:动态规划


第一题

题目来源

70. 爬楼梯 - 力扣(LeetCode)

题目内容

解决方法

方法一:动态规划

可以使用动态规划的方法来解决这个问题。假设要爬到第n阶楼梯,那么可以从第n-1阶楼梯爬一步上来,或者从第n-2阶楼梯爬两步上来。因此,到达第n阶楼梯的方法数等于到达第n-1阶楼梯的方法数加上到达第n-2阶楼梯的方法数。

首先初始化前两个楼梯的方法数,即dp[0]=1和dp[1]=1。然后从第3个楼梯开始,通过迭代计算每个楼梯的方法数,直到第n个楼梯。

class Solution {
public int climbStairs(int n) {if (n <= 1) {return 1;}int[] dp = new int[n + 1];dp[0] = 1;dp[1] = 1;for (int i = 2; i <= n; i++) {dp[i] = dp[i - 1] + dp[i - 2];}return dp[n];
}
}

复杂度分析:

  • 这个算法的时间复杂度是O(n),其中n是楼梯的阶数。这是因为我们需要计算从第2阶楼梯到第n阶楼梯的方法数,每次计算都需要常数时间。
  • 空间复杂度是O(n),因为我们使用一个大小为n+1的数组来存储每个楼梯的方法数。如果只需要存储前两个楼梯的方法数,空间复杂度可以优化为O(1)。

总结起来,这个算法是相当高效的,可以在合理的时间内解决规模较大的问题。

LeetCode运行结果:

方法二:迭代

除了动态规划,还可以使用迭代的方法来解决这个问题。迭代方法的思路是从前往后计算每个楼梯的方法数,并利用一个变量来保存前两个楼梯的方法数,以便计算当前楼梯的方法数。

class Solution {
public int climbStairs(int n) {if (n <= 1) {return 1;}int prev1 = 1; // 到达前一个楼梯的方法数int prev2 = 1; // 到达前两个楼梯的方法数int current = 0; // 当前楼梯的方法数for (int i = 2; i <= n; i++) {current = prev1 + prev2;prev2 = prev1;prev1 = current;}return current;
}
}

复杂度分析:

  • 时间复杂度: 在迭代方法中,我们使用一个循环来计算每个楼梯的方法数,循环执行了n-2次(从第3个楼梯开始计算)。因此,时间复杂度为O(n)。
  • 空间复杂度: 在迭代方法中,我们只使用了三个变量:prev1、prev2和current来保存楼梯的方法数。这三个变量的空间占用是常量级别的,与输入规模n无关。因此,空间复杂度为O(1)。

综上所述,迭代方法的时间复杂度为O(n),空间复杂度为O(1)。

LeetCode运行结果:

方法三:斐波那契数列公式

除了动态规划和迭代,还可以使用斐波那契数列公式的方法来解决爬楼梯问题。

斐波那契数列公式是一个通用的公式,可以用来计算斐波那契数列中任意一项的值。在爬楼梯问题中,我们可以利用斐波那契数列公式来计算到达第n阶楼梯的方法数。

具体步骤如下:

  1. 定义常量phi为(1 + sqrt(5)) / 2,定义常量psi为(1 - sqrt(5)) / 2。
  2. 利用斐波那契数列公式,计算第n+1项斐波那契数列的值,即Fn+1 = (phi^(n+1) - psi^(n+1)) / sqrt(5)。
  3. 最后,到达第n阶楼梯的方法数即为Fn+1。
class Solution {
public int climbStairs(int n) {double phi = (1 + Math.sqrt(5)) / 2;double psi = (1 - Math.sqrt(5)) / 2;double fn = (Math.pow(phi, n + 1) - Math.pow(psi, n + 1)) / Math.sqrt(5);return (int) Math.round(fn);
}
}

复杂度分析:

  • 时间复杂度:O(1),直接使用斐波那契数列公式计算结果。
  • 空间复杂度:O(1),只需要常量级的额外空间。

LeetCode运行结果:

第二题

题目来源

71. 简化路径 - 力扣(LeetCode)

题目内容

解决方法

方法一:栈

class Solution {public String simplifyPath(String path) {Deque<String> stack = new LinkedList<>();String[] components = path.split("/");for (String component : components) {if (component.equals(".") || component.isEmpty()) {// 当前目录,忽略} else if (component.equals("..")) {// 上级目录,弹出栈顶元素if (!stack.isEmpty()) {stack.pop();}} else {// 其他目录,入栈stack.push(component);}}StringBuilder sb = new StringBuilder();while (!stack.isEmpty()) {sb.append("/");sb.append(stack.pollLast());}return sb.length() == 0 ? "/" : sb.toString();}
}

思路解析:

  1. 将路径按照"/"分割成多个组件,存储在数组components中。
  2. 遍历components数组,对于每个组件进行如下处理:
    • 如果是"."或空字符串,表示当前目录,忽略即可。
    • 如果是"..",表示上级目录,将栈顶元素弹出。
    • 否则,表示其他目录,将其入栈。
  3. 遍历完所有组件后,将栈中元素依次弹出,拼接成简化后的路径。注意,由于栈是先进后出的,所以需要使用pollLast方法依次弹出栈顶元素。

复杂度分析:

时间复杂度分析:

  • 字符串的split方法的时间复杂度为O(n),其中n是路径的长度。因为需要遍历整个路径字符串,并根据"/"进行分割。
  • 遍历components数组的时间复杂度为O(m),其中m是路径中的组件数量。最坏情况下,路径中的组件数量与路径长度相等。
  • 栈的操作(入栈和出栈)的时间复杂度为O(1)。

综上所述,总的时间复杂度为O(n + m)。

空间复杂度分析:

  • components数组的空间复杂度为O(m),其中m是路径中的组件数量。
  • 栈的空间复杂度最坏情况下为O(m),即路径中每个组件都不同。
  • StringBuilder的空间复杂度为O(n),其中n是路径的长度。

综上所述,总的空间复杂度为O(n + m)。

LeetCode运行结果:

方法二:路径处理类

除了栈,还可以使用Java的路径处理类Path和Paths来实现简化路径。

思路解析:

  1. 使用Paths.get方法将路径字符串转换为Path对象。
  2. 遍历Path对象中的每个组件(即目录名或文件名)。
  3. 如果当前组件不是"."或"..",表示是有效的目录名或文件名,将其拼接到结果字符串中。
  4. 如果当前组件是"..",表示需要返回上级目录,将结果字符串中最后一个目录名删除即可。
import java.nio.file.Path;
import java.nio.file.Paths;class Solution {public String simplifyPath(String path) {Path p = Paths.get(path);StringBuilder sb = new StringBuilder();for (Path component : p) {if (!component.toString().equals("..") && !component.toString().equals(".")) {sb.append("/");sb.append(component.toString());} else if (component.toString().equals("..")) {int len = sb.length();if (len > 1) {sb.delete(sb.lastIndexOf("/"), len);}}}return sb.length() == 0 ? "/" : sb.toString();}
}

复杂度分析:

时间复杂度分析:

  • Paths.get方法的时间复杂度为O(n),其中n是路径的长度。
  • 遍历Path对象中的每个组件的时间复杂度为O(m),其中m是路径中的组件数量。
  • StringBuilder的操作的时间复杂度为O(n),其中n是路径的长度。

综上所述,总的时间复杂度为O(n + m)。

空间复杂度分析:

  • Path对象的空间复杂度为O(m),其中m是路径中的组件数量。
  • StringBuilder的空间复杂度为O(n),其中n是路径的长度。

综上所述,总的空间复杂度为O(n + m)。

LeetCode运行结果:

方法三:正则表达式

除了栈和Java的路径处理类,还可以使用正则表达式来实现简化路径。

思路解析:

  1. 将路径按照"/"分割成多个组件,存储在数组components中。
  2. 遍历components数组,对于每个组件进行如下处理:
    • 如果是"."或空字符串,表示当前目录或空目录,忽略即可。
    • 如果是"..",表示上级目录,将结果字符串中最后一个目录名删除即可。
    • 否则,表示其他目录,将其拼接到结果字符串中。
  3. 遍历完所有组件后,返回结果字符串。注意,如果结果字符串为空,则表示路径为根目录,需要返回"/"。
class Solution {public String simplifyPath(String path) {String[] components = path.split("/");StringBuilder sb = new StringBuilder();for (String component : components) {if (component.equals("..")) {// 返回上级目录,将结果字符串中最后一个目录名删除即可。int len = sb.length();if (len > 1) {sb.delete(sb.lastIndexOf("/"), len);}} else if (!component.equals(".") && !component.isEmpty()) {// 忽略当前目录和空目录,其他目录拼接到结果字符串中。sb.append("/");sb.append(component);}}return sb.length() == 0 ? "/" : sb.toString();}
}

复杂度分析:

时间复杂度分析:

  • 字符串的split方法和StringBuilder的append方法都是线性时间复杂度的,所以总时间复杂度为O(n),其中n是路径的长度。

空间复杂度分析:

  • components数组的空间复杂度为O(m),其中m是路径中的组件数量。
  • StringBuilder的空间复杂度为O(n),其中n是路径的长度。

综上所述,总的空间复杂度为O(n + m)。

LeetCode运行结果:

方法四:字符串处理

除了栈、Java的路径处理类、正则表达式,还可以使用字符串处理方法来实现简化路径。

思路解析:

  1. 使用两个指针i和j来遍历路径字符串path。
  2. 当指针i在路径中遇到连续的斜杠时,跳过这些多余的斜杠。
  3. 当指针i遇到非斜杠字符时,将其作为目录名的一部分,存储在StringBuilder对象dirName中。
  4. 检查dirName中的目录名:
    • 如果是"."或空字符串,表示当前目录或空目录,忽略即可。
    • 如果是"..",表示上级目录,将结果字符串中最后一个目录名删除即可。
    • 否则,表示其他目录,将其拼接到结果字符串中。
  5. 继续遍历路径字符串,直到遍历完所有字符。
  6. 返回结果字符串。如果结果字符串为空,则表示路径为根目录,需要返回"/"。
class Solution {public String simplifyPath(String path) {StringBuilder sb = new StringBuilder();int n = path.length();int i = 0;while (i < n) {// 跳过多余的斜杠while (i < n && path.charAt(i) == '/') {i++;}// 获取当前目录名StringBuilder dirName = new StringBuilder();while (i < n && path.charAt(i) != '/') {dirName.append(path.charAt(i));i++;}// 处理当前目录名String name = dirName.toString();if (name.equals("..")) {// 返回上级目录,将结果字符串中最后一个目录名删除即可。int len = sb.length();if (len > 1) {sb.delete(sb.lastIndexOf("/"), len);}} else if (!name.equals(".") && !name.isEmpty()) {// 忽略当前目录和空目录,其他目录拼接到结果字符串中。sb.append("/");sb.append(name);}}return sb.length() == 0 ? "/" : sb.toString();}
}

复杂度分析:

时间复杂度分析:

  • 遍历路径字符串的过程是线性时间复杂度的,所以总时间复杂度为O(n),其中n是路径的长度。

空间复杂度分析:

  • StringBuilder的空间复杂度为O(n),其中n是路径的长度。

综上所述,总的空间复杂度为O(n)。

LeetCode运行结果:

第三题

题目来源

72. 编辑距离 - 力扣(LeetCode)

题目内容

解决方法

方法一:动态规划

这是一道典型的动态规划问题。

定义状态:dp[i][j]表示将word1的前i个字符转换为word2的前j个字符所需的最少操作数。

状态转移方程:

  • 当word1[i] == word2[j]时,不需要进行任何操作,dp[i][j] = dp[i-1][j-1]。

  • 当word1[i] != word2[j]时,可以进行三种操作:

    • 插入一个字符:dp[i][j] = dp[i][j-1] + 1。
    • 删除一个字符:dp[i][j] = dp[i-1][j] + 1。
    • 替换一个字符:dp[i][j] = dp[i-1][j-1] + 1。

最终结果为dp[m][n],其中m和n分别是word1和word2的长度。

class Solution {
public int minDistance(String word1, String word2) {int m = word1.length();int n = word2.length();// 创建动态规划数组int[][] dp = new int[m+1][n+1];// 初始化边界条件for (int i = 0; i <= m; i++) {dp[i][0] = i;}for (int j = 0; j <= n; j++) {dp[0][j] = j;}// 动态规划求解for (int i = 1; i <= m; i++) {for (int j = 1; j <= n; j++) {if (word1.charAt(i-1) == word2.charAt(j-1)) {dp[i][j] = dp[i-1][j-1];} else {dp[i][j] = Math.min(dp[i-1][j-1], Math.min(dp[i][j-1], dp[i-1][j])) + 1;}}}return dp[m][n];
}
}

复杂度分析:

该算法的时间复杂度为O(m*n),其中m和n分别是word1和word2的长度。

在动态规划求解过程中,需要填充一个大小为(m+1)(n+1)的二维数组dp。对于每个位置(i, j),都需要通过比较word1.charAt(i-1)和word2.charAt(j-1)来确定操作的类型。因此,总共需要进行mn次比较和计算。

空间复杂度方面,需要额外开辟一个大小为(m+1)(n+1)的二维数组dp来保存中间结果。因此,空间复杂度也为O(mn)。

综上所述,该算法的时间复杂度和空间复杂度均为O(m*n)。

LeetCode运行结果:

这篇关于怒刷LeetCode的第28天(Java版)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/295614

相关文章

Spring事务传播机制最佳实践

《Spring事务传播机制最佳实践》Spring的事务传播机制为我们提供了优雅的解决方案,本文将带您深入理解这一机制,掌握不同场景下的最佳实践,感兴趣的朋友一起看看吧... 目录1. 什么是事务传播行为2. Spring支持的七种事务传播行为2.1 REQUIRED(默认)2.2 SUPPORTS2

怎样通过分析GC日志来定位Java进程的内存问题

《怎样通过分析GC日志来定位Java进程的内存问题》:本文主要介绍怎样通过分析GC日志来定位Java进程的内存问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、GC 日志基础配置1. 启用详细 GC 日志2. 不同收集器的日志格式二、关键指标与分析维度1.

Java进程异常故障定位及排查过程

《Java进程异常故障定位及排查过程》:本文主要介绍Java进程异常故障定位及排查过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、故障发现与初步判断1. 监控系统告警2. 日志初步分析二、核心排查工具与步骤1. 进程状态检查2. CPU 飙升问题3. 内存

java中新生代和老生代的关系说明

《java中新生代和老生代的关系说明》:本文主要介绍java中新生代和老生代的关系说明,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、内存区域划分新生代老年代二、对象生命周期与晋升流程三、新生代与老年代的协作机制1. 跨代引用处理2. 动态年龄判定3. 空间分

Java设计模式---迭代器模式(Iterator)解读

《Java设计模式---迭代器模式(Iterator)解读》:本文主要介绍Java设计模式---迭代器模式(Iterator),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,... 目录1、迭代器(Iterator)1.1、结构1.2、常用方法1.3、本质1、解耦集合与遍历逻辑2、统一

Java内存分配与JVM参数详解(推荐)

《Java内存分配与JVM参数详解(推荐)》本文详解JVM内存结构与参数调整,涵盖堆分代、元空间、GC选择及优化策略,帮助开发者提升性能、避免内存泄漏,本文给大家介绍Java内存分配与JVM参数详解,... 目录引言JVM内存结构JVM参数概述堆内存分配年轻代与老年代调整堆内存大小调整年轻代与老年代比例元空

深度解析Java DTO(最新推荐)

《深度解析JavaDTO(最新推荐)》DTO(DataTransferObject)是一种用于在不同层(如Controller层、Service层)之间传输数据的对象设计模式,其核心目的是封装数据,... 目录一、什么是DTO?DTO的核心特点:二、为什么需要DTO?(对比Entity)三、实际应用场景解析

Java 线程安全与 volatile与单例模式问题及解决方案

《Java线程安全与volatile与单例模式问题及解决方案》文章主要讲解线程安全问题的五个成因(调度随机、变量修改、非原子操作、内存可见性、指令重排序)及解决方案,强调使用volatile关键字... 目录什么是线程安全线程安全问题的产生与解决方案线程的调度是随机的多个线程对同一个变量进行修改线程的修改操

从原理到实战深入理解Java 断言assert

《从原理到实战深入理解Java断言assert》本文深入解析Java断言机制,涵盖语法、工作原理、启用方式及与异常的区别,推荐用于开发阶段的条件检查与状态验证,并强调生产环境应使用参数验证工具类替代... 目录深入理解 Java 断言(assert):从原理到实战引言:为什么需要断言?一、断言基础1.1 语

深度解析Java项目中包和包之间的联系

《深度解析Java项目中包和包之间的联系》文章浏览阅读850次,点赞13次,收藏8次。本文详细介绍了Java分层架构中的几个关键包:DTO、Controller、Service和Mapper。_jav... 目录前言一、各大包1.DTO1.1、DTO的核心用途1.2. DTO与实体类(Entity)的区别1