11_geemap学习笔记 | 导出影像

2023-10-27 23:20

本文主要是介绍11_geemap学习笔记 | 导出影像,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

导出图像

    • Download an ee.Image
    • Download an ee.ImageCollection
    • export pixels as a Numpy array

原文: 11 export image

import ee
import os
import geemap
geemap.set_proxy(port=10809)
# geemap.show_youtube('_6JOA-iiEGU')
ee.Initialize()

在这里插入图片描述

Map = geemap.Map()
Map

在这里插入图片描述

Download an ee.Image

image = ee.Image('LE7_TOA_5YEAR/1999_2003')
Landsat_vis = {'bands': ['B4','B3','B2'],'gamma':1.4
}
Map.addLayer(image, Landsat_vis, "LE7_TOA_5YEAR/1999_2003", True, 0.7)

Draw an shapes on the map using the Drawing tools before executing this code block

feature = Map.draw_last_featureif feature is None:geom = ee.Geometry.Polygon([[[-115.413031, 35.889467],[-115.413031, 36.543157],[-114.034328, 36.543157],[-114.034328, 35.889467],[-115.413031, 35.889467]]])feature = ee.Feature(geom, {})roi = feature.geometry()
mage_clip = image.clip(roi).unmask()
# geemap.ee_export_image(image, filename=filename, scale=90, region=roi, file_per_band=False)  #多波段单景导出
# geemap.ee_export_image(image, filename=filename, scale=90, region=roi, file_per_band=True)  #单波段多景导出
# geemap.ee_export_image_to_drive(image, description='landsat', folder='export', region=roi, scale=30)  #导入到google drive# geemap.ee_export_image(image_clip, filename="G:/learnpy/image/Landsat_clip.tif")
# Generating URL ...
# An error occurred while downloading.
# Pixel grid dimensions (32903x20189) must be less than or equal to 10000.
geemap.ee_export_image_to_drive(image_clip,'Landsat_clip')

Download an ee.ImageCollection

loc = ee.Geometry.Point(-99.2222, 46.7816)Collection = ee.ImageCollection('USDA/NAIP/DOQQ') \.filterBounds(loc) \.filterDate('2008-01-01', '2020-01-01') \.filter(ee.Filter.listContains("system:band_names", "N"))print(Collection.aggregate_array('system:index').getInfo())
# ['m_4609915_sw_14_060_20180902_20181213', 'm_4609915_sw_14_060_20190626', 'm_4609915_sw_14_1_20090818', 'm_4609915_sw_14_1_20100629', 'm_4609915_sw_14_1_20120714', 'm_4609915_sw_14_1_20140901', 'm_4609915_sw_14_1_20150926', 'm_4609915_sw_14_h_20160704', 'm_4609915_sw_14_h_20170703']
# Total number of images: 9geemap.ee_export_image_collection(Collection,out_dir="G:/learnpy/image")
# Exporting 1/9: m_4609915_sw_14_060_20180902_20181213.tif
# Generating URL ...
# Downloading data from https://earthengine.googleapis.com/v1alpha/projects/earthengine-legacy/thumbnails/8d16a41edd41d1284082803398383e03-2ec0cb7bf3526f28eb5d63fa7cea6c9c:getPixels
# Please wait ...
# Data downloaded to G:\learnpy\image\m_4609915_sw_14_060_20180902_20181213.tif# Exporting 2/9: m_4609915_sw_14_060_20190626.tif
# Generating URL ...
# Downloading data from https://earthengine.googleapis.com/v1alpha/projects/earthengine-legacy/thumbnails/7a8ad4398ad4dd29c566b8a792c9e778-1ce8d8cf577ffa2dd0a02a93d95c7e03:getPixels
# Please wait ...
# Data downloaded to G:\learnpy\image\m_4609915_sw_14_060_20190626.tif# Exporting 3/9: m_4609915_sw_14_1_20090818.tif
# Generating URL ...
# Downloading data from https://earthengine.googleapis.com/v1alpha/projects/earthengine-legacy/thumbnails/52d24668d5fef2a5977be7cdbad95c57-059fd8ff867dc7cb644f707440408152:getPixels
# Please wait ...
# Data downloaded to G:\learnpy\image\m_4609915_sw_14_1_20090818.tif# Exporting 4/9: m_4609915_sw_14_1_20100629.tif
# Generating URL ...
# Downloading data from https://earthengine.googleapis.com/v1alpha/projects/earthengine-legacy/thumbnails/28c559d946cf9695a99c8ef130f2ec7c-293bdf34e390abafa2b3c1a2b289c36e:getPixels
# Please wait ...
# Data downloaded to G:\learnpy\image\m_4609915_sw_14_1_20100629.tif# Exporting 5/9: m_4609915_sw_14_1_20120714.tif
# Generating URL ...
# Downloading data from https://earthengine.googleapis.com/v1alpha/projects/earthengine-legacy/thumbnails/76696e2aa614892e4abe4173dd8a4d5e-14cd8d050c70f60388028635be8e704f:getPixels
# Please wait ...
# Data downloaded to G:\learnpy\image\m_4609915_sw_14_1_20120714.tif# Exporting 6/9: m_4609915_sw_14_1_20140901.tif
# Generating URL ...
# Downloading data from https://earthengine.googleapis.com/v1alpha/projects/earthengine-legacy/thumbnails/4e2a4940ac033760fd03a66732930b69-03fe5f60410827d8ce5bb7a62ee4de59:getPixels
# Please wait ...
# Data downloaded to G:\learnpy\image\m_4609915_sw_14_1_20140901.tif# Exporting 7/9: m_4609915_sw_14_1_20150926.tif
# Generating URL ...
# Downloading data from https://earthengine.googleapis.com/v1alpha/projects/earthengine-legacy/thumbnails/0357ff98bba1708f03a598f25aab1129-7714770a5f611bdc8ad41000c81dcf59:getPixels
# Please wait ...
# Data downloaded to G:\learnpy\image\m_4609915_sw_14_1_20150926.tif# Exporting 8/9: m_4609915_sw_14_h_20160704.tif
# Generating URL ...
# Downloading data from https://earthengine.googleapis.com/v1alpha/projects/earthengine-legacy/thumbnails/a74e573f6f74cd731476f0bfecfd4142-0f693a0becda6474434c9e48df91e0b3:getPixels
# Please wait ...
# Data downloaded to G:\learnpy\image\m_4609915_sw_14_h_20160704.tif# Exporting 9/9: m_4609915_sw_14_h_20170703.tif
# Generating URL ...
# Downloading data from https://earthengine.googleapis.com/v1alpha/projects/earthengine-legacy/thumbnails/d78940c5a6248379ec4a544ce01a1866-66c4d058f6c0378d981eb4a2dc7f3519:getPixels
# Please wait ...
# Data downloaded to G:\learnpy\image\m_4609915_sw_14_h_20170703.tif

export pixels as a Numpy array

import numpy as np
import matplotlib.pyplot as plt
img = ee.Image('LANDSAT/LC08/C01/T1_SR/LC08_038029_20180810') \.select(['B4', 'B5', 'B6'])aoi = ee.Geometry.Polygon(
[[[-110.8, 44.7],[-110.8, 44.6],[-110.6, 44.6],[-110.6, 44.7]]], None,False)rgb_img = geemap.ee_to_numpy(img, region = aoi)
rgb_img
# array([[[ 395, 1622, 1263],
#         [ 399, 1711, 1263],
#         [ 387, 1811, 1295],
#         ...,
#         [ 645, 1401, 2226],
#         [ 635, 1616, 2233],
#         [ 627, 1855, 2230]],#        [[ 379, 1700, 1239],
#         [ 426, 1745, 1341],
#         [ 412, 1924, 1366],
#         ...,
#         [ 631, 1307, 2135],
#         [ 623, 1356, 2205],
#         [ 622, 1455, 2215]],#        [[ 362, 1814, 1203],
#         [ 507, 1814, 1397],
#         [ 432, 1908, 1403],
#         ...,
#         [ 629, 1388, 2181],
#         [ 616, 1373, 2082],
#         [ 687, 1452, 2304]],#        ...,#        [[ 293, 1557, 1005],
#         [ 314, 1560, 1001],
#         [ 302, 1538, 1056],
#         ...,
#         [ 286, 1376, 1141],
#         [ 292, 1396, 1137],
#         [ 294, 1507, 1155]],#        [[ 304, 1531,  997],
#         [ 306, 1508,  993],
#         [ 260, 1457,  884],
#         ...,
#         [ 276, 1169, 1030],
#         [ 257, 1285,  982],
#         [ 260, 1416, 1003]],#        [[ 319, 1505, 1005],
#         [ 302, 1527, 1040],
#         [ 296, 1471,  942],
#         ...,
#         [ 271, 1070,  991],
#         [ 272, 1152,  989],
#         [ 253, 1230,  924]]])
print(rgb_img.shape)
# plt.imshow(rgb_img)
# plt.show()
# Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
rgb_img_test = (255*((rgb_img[:, :, 0:3] - 100)/3500)).astype('uint8')
plt.imshow(rgb_img_test)
plt.show()

在这里插入图片描述

这篇关于11_geemap学习笔记 | 导出影像的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/289089

相关文章

利用Python快速搭建Markdown笔记发布系统

《利用Python快速搭建Markdown笔记发布系统》这篇文章主要为大家详细介绍了使用Python生态的成熟工具,在30分钟内搭建一个支持Markdown渲染、分类标签、全文搜索的私有化知识发布系统... 目录引言:为什么要自建知识博客一、技术选型:极简主义开发栈二、系统架构设计三、核心代码实现(分步解析

Python将博客内容html导出为Markdown格式

《Python将博客内容html导出为Markdown格式》Python将博客内容html导出为Markdown格式,通过博客url地址抓取文章,分析并提取出文章标题和内容,将内容构建成html,再转... 目录一、为什么要搞?二、准备如何搞?三、说搞咱就搞!抓取文章提取内容构建html转存markdown

vue使用docxtemplater导出word

《vue使用docxtemplater导出word》docxtemplater是一种邮件合并工具,以编程方式使用并处理条件、循环,并且可以扩展以插入任何内容,下面我们来看看如何使用docxtempl... 目录docxtemplatervue使用docxtemplater导出word安装常用语法 封装导出方

java中使用POI生成Excel并导出过程

《java中使用POI生成Excel并导出过程》:本文主要介绍java中使用POI生成Excel并导出过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录需求说明及实现方式需求完成通用代码版本1版本2结果展示type参数为atype参数为b总结注:本文章中代码均为

Python实现将MySQL中所有表的数据都导出为CSV文件并压缩

《Python实现将MySQL中所有表的数据都导出为CSV文件并压缩》这篇文章主要为大家详细介绍了如何使用Python将MySQL数据库中所有表的数据都导出为CSV文件到一个目录,并压缩为zip文件到... python将mysql数据库中所有表的数据都导出为CSV文件到一个目录,并压缩为zip文件到另一个

Java导入、导出excel用法步骤保姆级教程(附封装好的工具类)

《Java导入、导出excel用法步骤保姆级教程(附封装好的工具类)》:本文主要介绍Java导入、导出excel的相关资料,讲解了使用Java和ApachePOI库将数据导出为Excel文件,包括... 目录前言一、引入Apache POI依赖二、用法&步骤2.1 创建Excel的元素2.3 样式和字体2.

Java进阶学习之如何开启远程调式

《Java进阶学习之如何开启远程调式》Java开发中的远程调试是一项至关重要的技能,特别是在处理生产环境的问题或者协作开发时,:本文主要介绍Java进阶学习之如何开启远程调式的相关资料,需要的朋友... 目录概述Java远程调试的开启与底层原理开启Java远程调试底层原理JVM参数总结&nbsMbKKXJx

java导出pdf文件的详细实现方法

《java导出pdf文件的详细实现方法》:本文主要介绍java导出pdf文件的详细实现方法,包括制作模板、获取中文字体文件、实现后端服务以及前端发起请求并生成下载链接,需要的朋友可以参考下... 目录使用注意点包含内容1、制作pdf模板2、获取pdf导出中文需要的文件3、实现4、前端发起请求并生成下载链接使

SpringBoot实现导出复杂对象到Excel文件

《SpringBoot实现导出复杂对象到Excel文件》这篇文章主要为大家详细介绍了如何使用Hutool和EasyExcel两种方式来实现在SpringBoot项目中导出复杂对象到Excel文件,需要... 在Spring Boot项目中导出复杂对象到Excel文件,可以利用Hutool或EasyExcel

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操