深入鸿蒙开发-如何使用好 ArkUI 的 @Reusable?

2023-10-27 16:59

本文主要是介绍深入鸿蒙开发-如何使用好 ArkUI 的 @Reusable?,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

如何使用好 ArkUI 的 @Reusable?

OpenHarmony 组件复用机制

在ArkUI中,UI显示的内容均为组件,由框架直接提供的称为 系统组件,由开发者定义的称为 自定义组件

在进行 UI 界面开发时,通常不是简单的将系统组件进行组合使用,而是需要考虑代码可复用性、业务逻辑与UI分离,后续版本演进等因素。因此,将UI和部分业务逻辑封装成自定义组件是不可或缺的能力。

本文主要对组件复用做一些基本介绍,然后对 @Reusable做分析,进而帮助开发者理解设置前后的效果,以及我们会尝试寻找何时使用这个属性最佳,进而给开发者提出参考方案。

为什么要组件复用?

使用组件复用往往是解决资源短缺的问题,通过节约内存节省资源,简称开源节流。

开源节流是我国理财的基本原则之一。开源指开拓财政收入来源,节流指尽可能减少不必要的支出,或少花钱多办事。

荀子《富国》
荀子在《富国》篇中说“故田野县鄙者,财之本也;垣窌仓廪者,财之末也;百姓时和,事业得叙者,货币之源也;等赋府库者,货之流也。故明君必养其和、节其流、开其源而时斟酌焉。”其意系指农业是创造财富的根本大业,聚财只是其结果,货币只是流通的手段,财政收入只能从流通中取得,故用扩大流通的方式来增加收入,对增加财富并无好处。

同理,鸿蒙系统的内存是非常宝贵的,它不仅需要提供给底层系统维持系统正常运行,还要分配给网络、通知、后台任务、传感器、中断等一系列工作。那么我们在应用开发时就要想办法节约内存,为系统工作分忧。

@Reusable组件复用装饰器

在 ArkUI中,使用 @Component装饰器修饰组件,组件允许开发者组合使用系统组件、及其属性和方法,并通过状态变量的改变,来驱动UI的刷新。 @Reusable是修饰组件的属性,赋予组件重用的特性。
在这里插入图片描述

什么是@Reusable?

@Reusable 是一个装饰器,它可以标识自定义组件具备可复用的能力,也可以被添加到任意的自定义组件上。并且也可以在跨平台提供响应的能力。整体来说,它是 ArkUI的一部分。

它的定义如下:

/*** Defining Reusable ClassDecorator.** @syscap SystemCapability.ArkUI.ArkUI.Full* @crossplatform* @since 10*/
declare const Reusable: ClassDecorator;

可以看出,Reusable 实际上是一个 ClassDecorator , 那么它的内部结构是如何的呢?

从上图可以分析并查看 component构造函数:

    constructor(parent, localStorage, elmtId = -1) {super();...this.recycleManager = undefined;...
}

component的构造函数中我们发现,每一个 component持有一个 recycleManagerrecycleManager参与管理 Reusable 组件,那么 recycleManager是如何管理复用组建的呢?

接下来我们再看它的后端实现逻辑:

视图层的关系如下:

视图层是通过js实现的,

  1. xxx
  2. xxx

…todo

我们在视图树的结构中发现一个环,众所周知,环会产生内存泄漏,所以在页面退出时,需要将 RecycleManager中持有的view全部手动释放,以此来破环。

当组件被重用时,就会触发 aboutToReuse 方法:

aboutToReuse?(params: { [key: string]: unknown }): void;

在这个函数中就可以重载数据。

连接层的关系如下:

连接层是桥接 js 和 c++的中间层。

我们在 js_ace_page.h文件中发现以下代码,可以验证持有关系。

namespace OHOS::Ace::Framework {...
private:
#ifndef NG_BUILDvoid SwapBackgroundDecoration(const RefPtr<PageTransitionComponent>& transition);
#endif...RefPtr<Component> component_;
...
}
节点层的关系如下:

节点层是通过c++实现的。

  1. xxx
  2. xxx

…todo

那么我们接下来看下组件复用发生和不发生时的区别:

组件复用发生时:

在复用组件在view显示后,组织结构如下:

在c++
构造树中,当@Reusable修饰的组建复用后,JSView强持有c++的view,page的实例被RecycleManager 管理持有。

此时如果page被回收,由于 c++的view 被jsview强持有,就无法得到释放。所以需要在c++的析构中,对RecycleManager中所有的 复用组件释放,完成手动释放。

组件复用不发生时:

在复用组件从view移除后,组织结构发生如下变化:

在c++
构造树中,当@Reusable修饰的组建删除后,JSView不再强持有c++的view,此时c++的view被RecycleManager 管理持有,等待下一次被重用。

此时如果page被回收,由于 c++的view 并没有被jsview强持有,就可以得到释放。

。。todo

实战:@Reusable 可以解决的问题:

现在我们知道了 @Reusable 的基本功能,那么它在实际开发中可以解决什么问题呢?根据我的思考🤔️和整理,主要可以解决以下三类问题。

问题一:解决组件嵌套过深:

子组件通过@Prop接收父组件传递的数据,如果嵌套的层数过多,会导致深拷贝占用的空间过大以及GarbageCollection(垃圾回收),引起性能问题。通过 @Reusable可解决嵌套的层数过多的问题。

那么 @Reusable是如何解决这个问题的?请看下文:

我们在开发时往往会遇到多层组件嵌套的场景,通俗说就是view中套子view,子view中又套孙子view,以此类推。
这样就会产生一个嵌套过深的问题参考,见下图:

具体代码如下:

@Entry
@Component
struct FatherView {@State vote: ClassE = new ClassE()build() {Column() {Button('change').onClick(() => {this.vote.name = "I'm Father"})Child({ voteOne: this.vote })}}
}@Component
struct SonView {@Prop voteOne: ClassEbuild() {Column() {Button('change').onClick(() => {this.vote.name = "I'am Son"})Child({ voteTwo: this.vote })}}
}@Component
struct SonView {@Prop voteTwo: ClassDbuild() {Column() {Button('change').onClick(() => {this.vote.name = "I'am grandson"})Child({ voteThree: this.vote })}}
}...

在不断增加层次后,问题产生了:

  1. 由于层次过深,代码难以阅读,并且传递关系过于复杂,传递依赖链过长,不满足第三范式。
    第三范式:表中每一列的属性都不可再分,且非主属性完全依赖于主属性,且每个非主属性都不传递函数依赖于主属性。 https://en.wikipedia.org/wiki/Third_normal_form

  2. 可能触发GarbageCollection(垃圾回收机制),产生问题。

具体什么条件会触发,暂无资料,还需要相关子系统提供源码分析🧐。

那么在使用 @Reusable优化后的效果如下:

具体代码如下:

@Entry
@Component
struct FatherView {@State vote: ClassE = new ClassE()build() {Column() {Button('change').onClick(() => {this.vote.name = "I'm Father"})Child({ voteOne: this.vote })}}
}@@Reusable
@Component
struct SonView {@Prop voteOne: ClassEbuild() {Column() {Button('change').onClick(() => {this.vote.name = "I'am Son"})Child({ voteTwo: this.vote })}}
}@@Reusable
@Component
struct SonView {@Prop voteTwo: ClassDbuild() {Column() {Button('change').onClick(() => {this.vote.name = "I'am grandson"})Child({ voteThree: this.vote })}}
}...

在使用 @Reusable优化后,问题解决了:

  1. 消除了传递依赖,代码层次结构更清晰了,对于组件间互相交互也更好处理,在深拷贝的传递链上已满足第三范式。

  2. 深度只有2层,100%避免了由于深度增加触发GarbageCollection(垃圾回收机制)的条件,避免产生问题。

问题二:减少创建控件时间:

。。todo

问题三:使代码更优雅:

。。todo

总结:

。。todo

个人观点:

。。todo

相关扩展:

。。todo

– 缓冲池机制:

传统的 LRU:

什么是预读失败?

什么是缓冲池污染?

这篇关于深入鸿蒙开发-如何使用好 ArkUI 的 @Reusable?的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/287068

相关文章

这15个Vue指令,让你的项目开发爽到爆

1. V-Hotkey 仓库地址: github.com/Dafrok/v-ho… Demo: 戳这里 https://dafrok.github.io/v-hotkey 安装: npm install --save v-hotkey 这个指令可以给组件绑定一个或多个快捷键。你想要通过按下 Escape 键后隐藏某个组件,按住 Control 和回车键再显示它吗?小菜一碟: <template

中文分词jieba库的使用与实景应用(一)

知识星球:https://articles.zsxq.com/id_fxvgc803qmr2.html 目录 一.定义: 精确模式(默认模式): 全模式: 搜索引擎模式: paddle 模式(基于深度学习的分词模式): 二 自定义词典 三.文本解析   调整词出现的频率 四. 关键词提取 A. 基于TF-IDF算法的关键词提取 B. 基于TextRank算法的关键词提取

Hadoop企业开发案例调优场景

需求 (1)需求:从1G数据中,统计每个单词出现次数。服务器3台,每台配置4G内存,4核CPU,4线程。 (2)需求分析: 1G / 128m = 8个MapTask;1个ReduceTask;1个mrAppMaster 平均每个节点运行10个 / 3台 ≈ 3个任务(4    3    3) HDFS参数调优 (1)修改:hadoop-env.sh export HDFS_NAMENOD

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

Hadoop数据压缩使用介绍

一、压缩原则 (1)运算密集型的Job,少用压缩 (2)IO密集型的Job,多用压缩 二、压缩算法比较 三、压缩位置选择 四、压缩参数配置 1)为了支持多种压缩/解压缩算法,Hadoop引入了编码/解码器 2)要在Hadoop中启用压缩,可以配置如下参数

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

Makefile简明使用教程

文章目录 规则makefile文件的基本语法:加在命令前的特殊符号:.PHONY伪目标: Makefilev1 直观写法v2 加上中间过程v3 伪目标v4 变量 make 选项-f-n-C Make 是一种流行的构建工具,常用于将源代码转换成可执行文件或者其他形式的输出文件(如库文件、文档等)。Make 可以自动化地执行编译、链接等一系列操作。 规则 makefile文件

深入探索协同过滤:从原理到推荐模块案例

文章目录 前言一、协同过滤1. 基于用户的协同过滤(UserCF)2. 基于物品的协同过滤(ItemCF)3. 相似度计算方法 二、相似度计算方法1. 欧氏距离2. 皮尔逊相关系数3. 杰卡德相似系数4. 余弦相似度 三、推荐模块案例1.基于文章的协同过滤推荐功能2.基于用户的协同过滤推荐功能 前言     在信息过载的时代,推荐系统成为连接用户与内容的桥梁。本文聚焦于

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

嵌入式QT开发:构建高效智能的嵌入式系统

摘要: 本文深入探讨了嵌入式 QT 相关的各个方面。从 QT 框架的基础架构和核心概念出发,详细阐述了其在嵌入式环境中的优势与特点。文中分析了嵌入式 QT 的开发环境搭建过程,包括交叉编译工具链的配置等关键步骤。进一步探讨了嵌入式 QT 的界面设计与开发,涵盖了从基本控件的使用到复杂界面布局的构建。同时也深入研究了信号与槽机制在嵌入式系统中的应用,以及嵌入式 QT 与硬件设备的交互,包括输入输出设