本文主要是介绍leetcode - 823. Binary Trees With Factors,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
Description
Given an array of unique integers, arr, where each integer arr[i] is strictly greater than 1.
We make a binary tree using these integers, and each number may be used for any number of times. Each non-leaf node’s value should be equal to the product of the values of its children.
Return the number of binary trees we can make. The answer may be too large so return the answer modulo 10^9 + 7.
Example 1:
Input: arr = [2,4]
Output: 3
Explanation: We can make these trees: [2], [4], [4, 2, 2]
Example 2:
Input: arr = [2,4,5,10]
Output: 7
Explanation: We can make these trees: [2], [4], [5], [10], [4, 2, 2], [10, 2, 5], [10, 5, 2].
Constraints:
1 <= arr.length <= 1000
2 <= arr[i] <= 10^9
All the values of arr are unique.
Solution
Use dp, dp[i] = dp[j] * dp[k] + 1
, for all j, k
if j * k == i
Time complexity: o ( n 2 ) o(n^2) o(n2)
Space complexity: o ( n ) o(n) o(n)
Code
class Solution:def numFactoredBinaryTrees(self, arr: List[int]) -> int:dp = {each_num: 1 for each_num in arr}arr.sort()modulo = 1000000007for i in range(len(arr)):for j in range(i):if arr[i] % arr[j] == 0 and arr[i] // arr[j] in dp:dp[arr[i]] += dp[arr[j]] * dp[arr[i] // arr[j]]dp[arr[i]] %= moduloreturn sum(dp.values()) % modulo
这篇关于leetcode - 823. Binary Trees With Factors的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!