Kafka简单入门02——ISR机制

2023-10-26 13:15
文章标签 简单 入门 02 机制 kafka isr

本文主要是介绍Kafka简单入门02——ISR机制,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

ISR机制

ISR 关键概念

HW和LEO

Java使用Kafka通信

Kafka 生产者示例

Kafka 消费者示例


ISR机制

Kafka 中的 ISR(In-Sync Replicas)机制是一种用于确保数据可靠性和一致性的重要机制。ISR 是一组副本,它包括分区的领导者(Leader)和追随者(Follower)副本,这些副本与领导者保持数据同步。

ISR 关键概念
  1. 领导者和追随者:每个分区有一个领导者和零个或多个追随者。领导者负责处理客户端的写请求,而追随者主要用于数据复制。

  2. ISR 集合:ISR 集合是分区领导者的一组追随者副本,它们与领导者保持数据同步。只有在 ISR 集合中的追随者副本可以参与数据的写入和读取操作。

  3. 数据复制:领导者将消息写入其本地日志,并定期将这些消息发送给 ISR 集合中的追随者。追随者接收消息后,将其写入本地日志,以保持数据同步。

  4. Leader Epoch 和 Log Start Offset:ISR 集合中的每个追随者都维护了领导者的日志信息,包括领导者的 Leader Epoch 和 Log Start Offset。这些信息用于确保数据的正确复制和同步。

  5. 数据一致性:只有在 ISR 集合中的所有追随者都成功复制了一条消息后,领导者才会将该消息标记为已提交,确保数据的一致性。

  6. 故障处理:如果某个追随者发生故障或者追赶进度过慢,那么该追随者可能会被从 ISR 集合中移除。这有助于保持数据的可靠性和避免影响性能。

其中,需要注意的的概念:

  • 分区中的所有副本统称为AR(Assigned Replicas)。

  • 所有Leader副本加上和Leader副本保持同步的Follower副本组成ISR(In-Sync Replicas)。

  • 所有没有保持同步的Follower副本组成OSR(Out-of-Sync Replicas)。

  • AR = ISR + OSR。正常情况下,所有Follower副本都应该和Leader副本一致,即AR=ISR。

  • 当Leader故障时,在ISR集合中的Follower才有资格被选举为新的Leader。

HW和LEO

在 Kafka 中,HW(High Watermark)和 LEO(Log End Offset)是与数据复制和消费有关的两个重要概念。

HW(High Watermark):HW 是指在分区中,已经被所有追随者(Follower)副本复制的消息的位置。HW 是每个分区的属性,它表示已经提交的消息。只有在 HW 之前的消息才被认为是已经提交的,这些消息已经被写入分区的所有追随者副本,并且被认为是安全的,不会丢失。HW 是为了确保数据一致性和可靠性而引入的。

LEO(Log End Offset):LEO 是指在分区中当前最新消息的位置。LEO 表示分区日志中的最后一条消息的偏移量。LEO 包括已经被写入但尚未被所有追随者副本复制的消息,以及正在等待被写入的消息。LEO 是一个动态的属性,它会随着新消息的写入而逐渐增加。

HW 和 LEO 之间的关系非常重要,它们可以帮助确保数据的可靠性和一致性:

  • HW 之前的消息是已经提交的消息,它们在数据复制中是安全的,不会丢失。

  • LEO 之前的消息是已经写入但尚未被所有追随者副本复制的消息。这些消息可能会在 HW 之前被提交,也可能会在之后被提交。

  • 一旦 HW 追赶上 LEO,表示所有的消息都已经提交,分区的数据一致性得到了保障。

Kafka的消息同步流程:

  1. 初始状态,HW和LEO在同一位置。消费者可以读取的有效消息为0,1,2,3.

  2. 消息写入Leader,LEO位置改变。Follower进行同步。

  3. Follower同步进度决定HW位置,消费者可读的有效消息0,1,2,3,4。

  4. 完成同步,消费者可读的有效消息0,1,2,3,4,5,6。

可以看出,Kafka的复制机制既不是完全的同步复制,也不是单纯异步复制。

  • 同步复制要求所有Follower副本都复制完,太影响性能了。

  • 异步复制只要数据被写入Leader副本就认为提交成功,在这种情况下,如果Leader宕机时候Follower还是落后于Leader就会造成数据丢失。

而Kafka使用的ISR机制则有效地权衡了数据可靠性和性能之间的关系。

Java使用Kafka通信

以下是 Kafka 生产者和消费者的简单示例,使用 Kafka 的 Java 客户端库(Kafka Producer 和 Kafka Consumer)来创建一个基本的消息传递示例。

Kafka 生产者示例
import org.apache.kafka.clients.producer.*;
import java.util.Properties;
​
public class KafkaProducerExample {public static void main(String[] args) {String bootstrapServers = "localhost:9092"; // Kafka 服务器地址String topic = "my-topic"; // Kafka 主题名称
​Properties properties = new Properties();properties.put("bootstrap.servers", bootstrapServers);properties.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");properties.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");
​Producer<String, String> producer = new KafkaProducer<>(properties);
​// 发送消息producer.send(new ProducerRecord<>(topic, "key", "Hello, Kafka!"), (metadata, exception) -> {if (exception == null) {System.out.println("Message sent to partition " + metadata.partition() + ", offset " + metadata.offset());} else {System.err.println("Error sending message: " + exception.getMessage());}});
​producer.close();}
}
Kafka 消费者示例
import org.apache.kafka.clients.consumer.*;
import java.util.Properties;
import java.time.Duration;
import java.util.Collections;
​
public class KafkaConsumerExample {public static void main(String[] args) {String bootstrapServers = "localhost:9092"; // Kafka 服务器地址String groupId = "my-group"; // 消费者组 IDString topic = "my-topic"; // Kafka 主题名称
​Properties properties = new Properties();properties.put("bootstrap.servers", bootstrapServers);properties.put("group.id", groupId);properties.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");properties.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
​KafkaConsumer<String, String> consumer = new KafkaConsumer<>(properties);consumer.subscribe(Collections.singletonList(topic));
​while (true) {ConsumerRecords<String, String> records = consumer.poll(Duration.ofMillis(100));for (ConsumerRecord<String, String> record : records) {System.out.println("Received message: key = " + record.key() + ", value = " + record.value());}}}
}

这篇关于Kafka简单入门02——ISR机制的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/285630

相关文章

Java中Springboot集成Kafka实现消息发送和接收功能

《Java中Springboot集成Kafka实现消息发送和接收功能》Kafka是一个高吞吐量的分布式发布-订阅消息系统,主要用于处理大规模数据流,它由生产者、消费者、主题、分区和代理等组件构成,Ka... 目录一、Kafka 简介二、Kafka 功能三、POM依赖四、配置文件五、生产者六、消费者一、Kaf

Kafka拦截器的神奇操作方法

《Kafka拦截器的神奇操作方法》Kafka拦截器是一种强大的机制,用于在消息发送和接收过程中插入自定义逻辑,它们可以用于消息定制、日志记录、监控、业务逻辑集成、性能统计和异常处理等,本文介绍Kafk... 目录前言拦截器的基本概念Kafka 拦截器的定义和基本原理:拦截器是 Kafka 消息传递的不可或缺

利用Python编写一个简单的聊天机器人

《利用Python编写一个简单的聊天机器人》这篇文章主要为大家详细介绍了如何利用Python编写一个简单的聊天机器人,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 使用 python 编写一个简单的聊天机器人可以从最基础的逻辑开始,然后逐步加入更复杂的功能。这里我们将先实现一个简单的

一文带你理解Python中import机制与importlib的妙用

《一文带你理解Python中import机制与importlib的妙用》在Python编程的世界里,import语句是开发者最常用的工具之一,它就像一把钥匙,打开了通往各种功能和库的大门,下面就跟随小... 目录一、python import机制概述1.1 import语句的基本用法1.2 模块缓存机制1.

Redis主从/哨兵机制原理分析

《Redis主从/哨兵机制原理分析》本文介绍了Redis的主从复制和哨兵机制,主从复制实现了数据的热备份和负载均衡,而哨兵机制可以监控Redis集群,实现自动故障转移,哨兵机制通过监控、下线、选举和故... 目录一、主从复制1.1 什么是主从复制1.2 主从复制的作用1.3 主从复制原理1.3.1 全量复制

Redis缓存问题与缓存更新机制详解

《Redis缓存问题与缓存更新机制详解》本文主要介绍了缓存问题及其解决方案,包括缓存穿透、缓存击穿、缓存雪崩等问题的成因以及相应的预防和解决方法,同时,还详细探讨了缓存更新机制,包括不同情况下的缓存更... 目录一、缓存问题1.1 缓存穿透1.1.1 问题来源1.1.2 解决方案1.2 缓存击穿1.2.1

Java如何通过反射机制获取数据类对象的属性及方法

《Java如何通过反射机制获取数据类对象的属性及方法》文章介绍了如何使用Java反射机制获取类对象的所有属性及其对应的get、set方法,以及如何通过反射机制实现类对象的实例化,感兴趣的朋友跟随小编一... 目录一、通过反射机制获取类对象的所有属性以及相应的get、set方法1.遍历类对象的所有属性2.获取

MySQL中的锁和MVCC机制解读

《MySQL中的锁和MVCC机制解读》MySQL事务、锁和MVCC机制是确保数据库操作原子性、一致性和隔离性的关键,事务必须遵循ACID原则,锁的类型包括表级锁、行级锁和意向锁,MVCC通过非锁定读和... 目录mysql的锁和MVCC机制事务的概念与ACID特性锁的类型及其工作机制锁的粒度与性能影响多版本

使用IntelliJ IDEA创建简单的Java Web项目完整步骤

《使用IntelliJIDEA创建简单的JavaWeb项目完整步骤》:本文主要介绍如何使用IntelliJIDEA创建一个简单的JavaWeb项目,实现登录、注册和查看用户列表功能,使用Se... 目录前置准备项目功能实现步骤1. 创建项目2. 配置 Tomcat3. 项目文件结构4. 创建数据库和表5.

使用PyQt5编写一个简单的取色器

《使用PyQt5编写一个简单的取色器》:本文主要介绍PyQt5搭建的一个取色器,一共写了两款应用,一款使用快捷键捕获鼠标附近图像的RGB和16进制颜色编码,一款跟随鼠标刷新图像的RGB和16... 目录取色器1取色器2PyQt5搭建的一个取色器,一共写了两款应用,一款使用快捷键捕获鼠标附近图像的RGB和16