板内板间通信协议及接口(三)I2C

2023-10-25 05:30

本文主要是介绍板内板间通信协议及接口(三)I2C,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

这节展开I2C通信协议的简介。

I2C是什么
在消费电子,工业电子等领域,会使用各种类型的芯片,如微控制器,电源管理,显示驱动,传感器,存储器,转换器等,他们有着不同的功能,有时需要快速的进行数据的交互,为了使用最简单的方式使这些芯片互联互通,于是I2C诞生了,I2C(Inter-Integrated Circuit)是一种通用的总线协议。它是由Philips(飞利浦)公司,现NXP(恩智浦)半导体开发的一种简单的双向两线制总线协议标准。

对于硬件设计人员来说,只需要2个管脚,极少的连接线和面积,就可以实现芯片间的通讯,对于软件开发者来说,可以使用同一个I2C驱动库,来实现实现不同器件的驱动,大大减少了软件的开发时间。极低的工作电流,降低了系统的功耗,完善的应答机制大大增强通讯的可靠性。

5种速率
I2C协议可以工作在以下5种速率模式下,不同的器件可能支持不同的速率。

标准模式(Standard):100kbps
快速模式(Fast):400kbps
快速模式+(Fast-Plus):1Mbps
高速模式(High-speed):3.4Mbps
超快模式(Ultra-Fast):5Mbps(单向传输)

【bps:bit/s,即SCL的频率】

其中超快模式是单向数据传输,通常用于LED、LCD等不需要应答的器件,和正常的I2C操作时序类似,但是只进行写数据,不需要考虑ACK应答信号。

在I2C协议的官方文档NXP_UM10204_I2C-bus specification and user manual_Rev.6,超快模式和其他模式在3.2和3.1章节分别进行介绍。

4种信号
I2C协议最基础的几种信号:起始、停止、应答和非应答信号。

起始信号
I2C协议规定,SCL处于高电平时,SDA由高到低变化,这种信号是起始信号。

停止信号
I2C协议规定,SCL处于高电平,SDA由低到高变化,这种信号是停止信号。

数据有效性

I2C协议对数据的采样发生在SCL高电平期间,除了起始和停止信号,在数据传输期间,SCL为高电平时,SDA必须保持稳定,不允许改变,在SCL低电平时才可以进行变化。

应答信号
I2C最大的一个特点就是有完善的应答机制,从机接收到主机的数据时,会回复一个应答信号来通知主机表示“我收到了”。

应答信号出现在1个字节传输完成之后,即第9个SCL时钟周期内,此时主机需要释放SDA总线,把总线控制权交给从机,由于上拉电阻的作用,此时总线为高电平,如果从机正确的收到了主机发来的数据,会把SDA拉低,表示应答响应。

使用MCU、FPGA等控制器实现时,需要在第9个SCL时钟周期把SDA设置为高阻输入状态,如果读取到SDA为低电平,则表示数据被成功接收到,可以进行下一步操作。

非应答信号

当第9个SCL时钟周期时,SDA保持高电平,表示非应答信号。

非应答信号可能是主机产生也可能是从机产生,产生非应答信号的情况主要有以下几种:

I2C总线上没有主机所指定地址的从机设备
从机正在执行一些操作,处于忙状态,还没有准备好与主机通讯
主机发送的一些控制命令,从机不支持
主机接收从机数据时,主机产生非应答信号,通知从机数据传输结束,不要再发数据了
读写时序
向指定寄存器地址写入指定数据操作时序:

注意,读数据时有两次起始信号。

7位和10位地址

大多数I2C器件支持7位地址模式,有一些器件还支持10位地址,而且两种类型的器件可以连接在同一个I2C总线上,目前10位地址的器件还没有被广泛使用

主机发送,从机接收。使用10位地址进行写时序:

主机接收,从机发送。使用10位地址进行读时序:

 

I2C保留字节

I2C读写时起始位之后的第一个字节,除了厂商指定的设备地址外,还有一些保留字节,主要有两组0000 xxx和1111 xxx,保留字节的含义:

上述的10位地址模式,就是使用到了最后一种保留字节。

第一种广播模式,可以通过写入第二个字节06h来复位I2C总线上所有的从机器件。具体操作时序可以查看文档NXP_UM10204_I2C-bus specification and user manual_Rev.6:3.1.12 Reserved addresses章节有详细介绍。其中device ID控制字(1111 1xx1),可以读取I2C器件内部的24位器件ID,通过对照NXP I2C协议器件列表可以查询到器件所属的厂商和型号。

设备ID与器件厂商对应表

SPI和I2C的对比
I2C是半双工,SPI是全双工。

I2C支持多主多从模式,而SPI只能有一个主机。

从GPIO占用上来看,I2C占用更少的GPIO,更节省资源。

I2C有应答响应机制,数据可靠性更高,SPI没有应答机制。

I2C速率不会太高,最高速率3.4Mbps,SPI可以达到很高的速率。

I2C通过器件地址来选择从机,从机数量的增加不会导致GPIO的增加,而SPI通过CS选择从机,每增加一个从机就要多占用一个GPIO。

SPI协议在SCLK边沿进行数据采样,I2C在SCL高电平器件进行数据采样。

两者大多都应用于板内器件短距离通讯。

1.IIC简介
        I2C是一种同步通信,以半双工方式传送的串行总线。由数据线SDA和时钟SCL构成的,可发送和接收数据。在CPU与被控IC之间、IC与IC之间进行双向传送,高速IIC总线一般可达400kbps以上。

2.读写数据概念
        1.读数据:指MCU从器件的数据总线上根据一定的时序来读取器件的数据。一般而言,MCU提供一个边沿信号,告诉器件可以发数据了,器件检测到边沿信号以后,立即在数据总线上更新数据,待数据稳定以后,MCU即可读取数据。

      2. 写数据:是指MCU向器件写入数据,其操作是:先将数据放置在数据总线上,等待其稳定之后,MCU产生一个边沿信号,将数据写入器件

      3.IIC总线读写数据

读数据:MCU发出边沿信号(下降沿)告诉器件发送数据,检测到边沿信号之后,器件更新数据,等待稳定之后MCU读取数据。
写数据:MCU先将数据放置在数据总线上,等待其稳定之后,从机检测到边沿信号(上升沿)后写数据到器件
3.IIC协议
       1. 包含空闲状态、起始信号、停止信号、应答信号、数据的有效性、数据传输

空闲状态:I2C总线总线的SDA和SCL两条信号线同时处于高电平时,规定为总线的空闲状态。此时各个器件的输出级场效应管均处在截止状态,即释放总线,由两条信号线各自的上拉电阻把电平拉高
起始信号:当SCL为高期间,SDA由高到低的跳变
停止信号:当SCL为高期间,SDA由低到高的跳变


应答信号:发送器每发送一个字节,就在时钟脉冲9期间释放数据线,由接收器反馈一个应答信号。 应答信号为低电平时,规定为有效应答位(ACK简称应答位),表示接收器已经成功地接收了该字节;应答信号为高电平时,规定为非应答位(NACK),一般表示接收器接收该字节没有成功。
对于反馈有效应答位ACK的要求是,接收器在第9个时钟脉冲之前的低电平期间将SDA线拉低,并且确保在该时钟的高电平期间为稳定的低电平。 如果接收器是主控器,则在它收到最后一个字节后,发送一个NACK信号,以通知被控发送器结束数据发送,并释放SDA线,以便主控接收器发送一个停止信号P。


数据的有效性:I2C总线进行数据传送时,时钟信号为高电平期间,数据线上的数据必须保持稳定。只有在时钟线上的信号为低电平期间,数据线上的高电平或低电平状态才允许变化。
即:数据在SCL的上升沿到来之前就需准备好。并在下降沿到来之前必须稳定


简单来讲:(先忽略应答信号;图中SCL为同一个脉冲)

4.总结
参考博客:I2C 时序详解,精确到每一个时钟_谁de如花的博客-CSDN博客_i2c时钟

4.1 MCU通过IIC写数据到器件,连续写入两个字节

要点:

SCL低电平期间,SDA允许数据变化,主机可以将一位数据送到SDA上,所以要设置主机的SDA为输出、拉低SCL。
SCL高电平期间,SDA数据稳定,往从机写入数据。8个持续脉冲,完成一个字节的写入。
第9个脉冲,从机在低电平期间将应答信号放到SDA上,主机在高电平期间读取SDA,所以要设置主机的SDA为输入,SDA为0则应答,SDA为1则非应答


 4.2 MCU通过IIC读取器件的数据,读取两个字节

要点:

主机要读取数据,所以设置SDA为输入
时钟下降沿通知从机要将数据放在SDA上,并在低电平期间从机会将一位数据放置在SDA上,接下来的高电平期间,数据稳定了,主机在读取SDA数据
8个持续脉冲,完成一个字节的读取
5.正点原子的程序实例:

#define SDA_IN()  {GPIOB->CRL&=0X0FFFFFFF;GPIOB->CRL|=(u32)8<<28;}
#define SDA_OUT() {GPIOB->CRL&=0X0FFFFFFF;GPIOB->CRL|=(u32)3<<28;}

//IO操作函数    
#define IIC_SCL    PBout(6) //SCL
#define IIC_SDA    PBout(7) //SDA    
#define READ_SDA   PBin(7)  //输入SDA


//初始化IIC
void IIC_Init(void)
{                         
    GPIO_InitTypeDef GPIO_InitStructure;
    RCC_APB2PeriphClockCmd(    RCC_APB2Periph_GPIOB, ENABLE );    //使能GPIOB时钟
       
    GPIO_InitStructure.GPIO_Pin = GPIO_Pin_6|GPIO_Pin_7;
    GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP ;   //推挽输出
    GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
    GPIO_Init(GPIOB, &GPIO_InitStructure);
    GPIO_SetBits(GPIOB,GPIO_Pin_6|GPIO_Pin_7);     //PB6,PB7 输出高
}


//产生IIC起始信号
void IIC_Start(void)
{
    SDA_OUT();     //sda线输出
    IIC_SDA=1;            
    IIC_SCL=1;
    delay_us(4);
     IIC_SDA=0;//when CLK is high,DATA change form high to low
    delay_us(4);
    IIC_SCL=0;//钳住I2C总线,准备发送或接收数据
}      


//产生IIC停止信号
void IIC_Stop(void)
{
    SDA_OUT();//sda线输出
    IIC_SCL=0;
    IIC_SDA=0;//STOP:when CLK is high DATA change form low to high
     delay_us(4);
    IIC_SCL=1;
    IIC_SDA=1;//发送I2C总线结束信号
    delay_us(4);                                   
}


//等待应答信号到来
//返回值:1,接收应答失败
//        0,接收应答成功
u8 IIC_Wait_Ack(void)
{
    u8 ucErrTime=0;
    SDA_IN();      //SDA设置为输入  
    IIC_SDA=1;delay_us(1);       
    IIC_SCL=1;delay_us(1);    
    while(READ_SDA)
    {
        ucErrTime++;
        if(ucErrTime>250)
        {
            IIC_Stop();
            return 1;
        }
    }
    IIC_SCL=0;//时钟输出0        
    return 0;  
}
//产生ACK应答
void IIC_Ack(void)
{
    IIC_SCL=0;
    SDA_OUT();
    IIC_SDA=0;//低电平期间将SDA线拉低
    delay_us(2);
    IIC_SCL=1;
    delay_us(2);
    IIC_SCL=0;
}
//不产生ACK应答            
void IIC_NAck(void)
{
    IIC_SCL=0;
    SDA_OUT();
    IIC_SDA=1;//低电平期间不拉低SDA线
    delay_us(2);
    IIC_SCL=1;
    delay_us(2);
    IIC_SCL=0;
}  

                                       
//MCU通过IIC往从机写入一个字节
//返回从机有无应答
//1,有应答
//0,无应答              
void IIC_Send_Byte(u8 txd)
{                        
    u8 t;   
    SDA_OUT();//设置SDA 为输出      
    IIC_SCL=0;//拉低时钟开始数据传输
    for(t=0;t<8;t++)
    {              
        IIC_SDA=(txd&0x80)>>7;//SCL低电平期间,主机将一位数据放置SDA上
        txd<<=1;       
        delay_us(2);  
        IIC_SCL=1;//SCL高电平期间,往从机写入数据
        delay_us(2);
        IIC_SCL=0;    
        delay_us(2);
    }    
}         
//MCU通过IIC读取从机一个字节,ack=1时,发送ACK,ack=0,发送nACK   
u8 IIC_Read_Byte(unsigned char ack)
{
    unsigned char i,receive=0;
    SDA_IN();//SDA设置为输入
    for(i=0;i<8;i++ )
    {
        IIC_SCL=0;//SCL低电平期间,从机将数据放在SDA上
        delay_us(2);
        IIC_SCL=1;//SCL高电平期间,主机读取SDA数据
        receive<<=1;
        if(READ_SDA)receive++;   
        delay_us(1);
    }                    
    if (!ack)
        IIC_NAck();//发送nACK
    else
        IIC_Ack(); //发送ACK   
    return receive;
}

6.2402芯片的使用

        

(1)芯片的寻址:
        AT24C设备地址为如下,前四位固定为1010,A2~A0为由管脚电平。AT24CXX EEPROM Board模块中默认为接地。A2-A0=000,最后一位表示读写操作。所以AT24Cxx的读地址为0xA1,写地址为0xA0。

也就是说如果是
写24C02的时候,从器件地址为10100000(0xA0);
读24C02的时候,从器件地址为10100001(0xA1)。

(2)片内地址寻址:

      芯片寻址可对内部256B中的任一个进行读/写操作,其寻址范围为00~FF,共256个寻址单位。
具体解释:
        由于24C02只有256个字节的存储空间,所以只需要1个字节就可以寻址完24C02的存储空间,但是无法寻址完更大容量的存储IC,比如24C04的存储容量是512字节,需要9个bit的地址位才能寻址完。由上图可以看到,24C04的设备地址内是没有A0参数的,被a8代替了,这个a8就是24C04的第9个bit的地址位,也就是说24C04的A0引脚是不起作用的,这样也就造成了在I2C总线上只能同时挂载4个24C04芯片。其它存储器如24C08、24C16也可以这么类推。

24C02的WP引脚是写保护引脚,当WP引脚接高电平的时,24C02只能进行读取操作,不能进行写操作。只有当WP引脚悬空或接低电平时,24C02才能进行写操作。
————————————————
版权声明:本文为CSDN博主「惟肖肖肖」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/xc_123/article/details/111632399

————————————————
版权声明:本文为CSDN博主「whik1194」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/whik1194/article/details/115040856

这篇关于板内板间通信协议及接口(三)I2C的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/280335

相关文章

Java 后端接口入参 - 联合前端VUE 使用AES完成入参出参加密解密

加密效果: 解密后的数据就是正常数据: 后端:使用的是spring-cloud框架,在gateway模块进行操作 <dependency><groupId>com.google.guava</groupId><artifactId>guava</artifactId><version>30.0-jre</version></dependency> 编写一个AES加密

java线程深度解析(一)——java new 接口?匿名内部类给你答案

http://blog.csdn.net/daybreak1209/article/details/51305477 一、内部类 1、内部类初识 一般,一个类里主要包含类的方法和属性,但在Java中还提出在类中继续定义类(内部类)的概念。 内部类的定义:类的内部定义类 先来看一个实例 [html]  view plain copy pu

模拟实现vector中的常见接口

insert void insert(iterator pos, const T& x){if (_finish == _endofstorage){int n = pos - _start;size_t newcapacity = capacity() == 0 ? 2 : capacity() * 2;reserve(newcapacity);pos = _start + n;//防止迭代

京东物流查询|开发者调用API接口实现

快递聚合查询的优势 1、高效整合多种快递信息。2、实时动态更新。3、自动化管理流程。 聚合国内外1500家快递公司的物流信息查询服务,使用API接口查询京东物流的便捷步骤,首先选择专业的数据平台的快递API接口:物流快递查询API接口-单号查询API - 探数数据 以下示例是参考的示例代码: import requestsurl = "http://api.tanshuapi.com/a

股票数据接口-陈科肇

陈科肇 新浪财经 sz-深圳sh-上海历史分价表:http://market.finance.sina.com.cn/pricehis.php?symbol=sz000506&startdate=2016-12-27&enddate=2016-12-27历史成交明细(当日成交明细):http://vip.stock.finance.sina.com.cn/quotes_service/v

实例demo理解面向接口思想

浅显的理解面向接口编程 Android开发的语言是java,至少目前是,所以理解面向接口的思想是有必要的。下面通过一个简单的例子来理解。具体的概括我也不知道怎么说。 例子: 现在我们要开发一个应用,模拟移动存储设备的读写,即计算机与U盘、MP3、移动硬盘等设备进行数据交换。已知要实现U盘、MP3播放器、移动硬盘三种移动存储设备,要求计算机能同这三种设备进行数据交换,并且以后可能会有新的第三方的

对接话费充值API接口的开发步骤以及各种优势

对接话费充值API接口通常涉及以下步骤: 1.选择API提供商: 研究并选择一个可靠的话费充值API提供商。考虑因素包括覆盖范围、费率、交易限额、客户支持和用户评价。 2.注册和获取API密钥: 在选定的API提供商平台上注册账户,并获取API密钥或访问令牌,这是调用API时进行身份验证的必要信息。 3.阅读API文档: 仔细阅读API文档,了解如何构建请求、需要哪些参数、API的

java类中定义接口的有哪些好处

第一步:首先是是定义一个类,同时里面定义接口 public class Util { public interface Worker { void work(int a); } } 第二步:定义一个类去实现第一步类中定义的接口 public class Demo implements Worker { @Override public void work(int a) { System

[苍穹外卖]-04菜品管理接口开发

效果预览 新增菜品 需求分析 查看产品原型分析需求, 包括用到哪些接口, 业务的限制规则 业务规则 菜品名称必须是唯一的菜品必须属于某个分类下, 不能单独存在新增菜品时可以根据情况选择菜品的口味每个菜品必须对应一张图片 接口设计 根据类型查询分类接口 文件上传接口 新增菜品接口 数据表设计 设计dish菜品表 和 dish_fl

接口自动化三大经典难题

目录 一、接口项目不生成token怎么解决关联问题 1. Session机制 2. 基于IP或设备ID的绑定 3. 使用OAuth或第三方认证 4. 利用隐式传递的参数 5. 基于时间戳的签名验证 二、接口测试中网络问题导致无法通过怎么办 1. 重试机制 2. 设置超时时间 3. 使用模拟数据 4. 网络问题的预检测 5. 日志记录与错误分析 6. 切换网络环境 7.