Looking to Listen at the Cocktail Party 代码详解

2023-10-24 22:58

本文主要是介绍Looking to Listen at the Cocktail Party 代码详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

这个是清华某位大佬对论文《Looking to Listen at the Cocktail Party 》的一个复现。代码链接

网络结构如下图:

在这里插入图片描述
由于AVSpeech这个数据集里是一些视频的片段,而输入网络的是视频中的人脸区域。所以先要做人脸识别,并把人脸截取。
这个代码中使用了Python的一个pretrained的mtcnn的包直接做的。

def face_detect(file,detector,frame_path,cat_train,output_dir):name = file.replace('.jpg', '').split('-')log = cat_train.iloc[int(name[0])]x = log[3]y = log[4]img = cv2.imread('%s%s'%(frame_path,file))x = img.shape[1] * xy = img.shape[0] * yfaces = detector.detect_faces(img)# check if detected facesif(len(faces)==0):print('no face detect: '+file)return #no facebounding_box = bounding_box_check(faces,x,y)if(bounding_box == None):print('face is not related to given coord: '+file)returnprint(file," ",bounding_box)print(file," ",x, y)crop_img = img[bounding_box[1]:bounding_box[1] + bounding_box[3],bounding_box[0]:bounding_box[0]+bounding_box[2]]crop_img = cv2.resize(crop_img,(160,160))cv2.imwrite('%s/frame_'%output_dir + name[0] + '_' + name[1] + '.jpg', crop_img)#crop_img = cv2.cvtColor(crop_img, cv2.COLOR_BGR2RGB)#plt.imshow(crop_img)#plt.show()

以下是AV的model代码:

from keras.models import Sequential
from keras.layers import Input, Dense, Convolution2D,Bidirectional, concatenate
from keras.layers import Flatten, BatchNormalization, ReLU, Reshape, Lambda, TimeDistributed
from keras.models import Model
from keras.layers.recurrent import LSTM
from keras.initializers import he_normal, glorot_uniform
import tensorflow as tfdef AV_model(people_num=2):def UpSampling2DBilinear(size):return Lambda(lambda x: tf.image.resize(x, size, method=tf.image.ResizeMethod.BILINEAR))def sliced(x, index):return x[:, :, :, index]# --------------------------- AS start ---------------------------audio_input = Input(shape=(298, 257, 2))print('as_0:', audio_input.shape)as_conv1 = Convolution2D(96, kernel_size=(1, 7), strides=(1, 1), padding='same', dilation_rate=(1, 1), name='as_conv1')(audio_input)as_conv1 = BatchNormalization()(as_conv1)as_conv1 = ReLU()(as_conv1)print('as_1:', as_conv1.shape)as_conv2 = Convolution2D(96, kernel_size=(7, 1), strides=(1, 1), padding='same', dilation_rate=(1, 1), name='as_conv2')(as_conv1)as_conv2 = BatchNormalization()(as_conv2)as_conv2 = ReLU()(as_conv2)print('as_2:', as_conv2.shape)as_conv3 = Convolution2D(96, kernel_size=(5, 5), strides=(1, 1), padding='same', dilation_rate=(1, 1), name='as_conv3')(as_conv2)as_conv3 = BatchNormalization()(as_conv3)as_conv3 = ReLU()(as_conv3)print('as_3:', as_conv3.shape)as_conv4 = Convolution2D(96, kernel_size=(5, 5), strides=(1, 1), padding='same', dilation_rate=(2, 1), name='as_conv4')(as_conv3)as_conv4 = BatchNormalization()(as_conv4)as_conv4 = ReLU()(as_conv4)print('as_4:', as_conv4.shape)as_conv5 = Convolution2D(96, kernel_size=(5, 5), strides=(1, 1), padding='same', dilation_rate=(4, 1), name='as_conv5')(as_conv4)as_conv5 = BatchNormalization()(as_conv5)as_conv5 = ReLU()(as_conv5)print('as_5:', as_conv5.shape)as_conv6 = Convolution2D(96, kernel_size=(5, 5), strides=(1, 1), padding='same', dilation_rate=(8, 1), name='as_conv6')(as_conv5)as_conv6 = BatchNormalization()(as_conv6)as_conv6 = ReLU()(as_conv6)print('as_6:', as_conv6.shape)as_conv7 = Convolution2D(96, kernel_size=(5, 5), strides=(1, 1), padding='same', dilation_rate=(16, 1), name='as_conv7')(as_conv6)as_conv7 = BatchNormalization()(as_conv7)as_conv7 = ReLU()(as_conv7)print('as_7:', as_conv7.shape)as_conv8 = Convolution2D(96, kernel_size=(5, 5), strides=(1, 1), padding='same', dilation_rate=(32, 1), name='as_conv8')(as_conv7)as_conv8 = BatchNormalization()(as_conv8)as_conv8 = ReLU()(as_conv8)print('as_8:', as_conv8.shape)as_conv9 = Convolution2D(96, kernel_size=(5, 5), strides=(1, 1), padding='same', dilation_rate=(1, 1), name='as_conv9')(as_conv8)as_conv9 = BatchNormalization()(as_conv9)as_conv9 = ReLU()(as_conv9)print('as_9:', as_conv9.shape)as_conv10 = Convolution2D(96, kernel_size=(5, 5), strides=(1, 1), padding='same', dilation_rate=(2, 2), name='as_conv10')(as_conv9)as_conv10 = BatchNormalization()(as_conv10)as_conv10 = ReLU()(as_conv10)print('as_10:', as_conv10.shape)as_conv11 = Convolution2D(96, kernel_size=(5, 5), strides=(1, 1), padding='same', dilation_rate=(4, 4), name='as_conv11')(as_conv10)as_conv11 = BatchNormalization()(as_conv11)as_conv11 = ReLU()(as_conv11)print('as_11:', as_conv11.shape)as_conv12 = Convolution2D(96, kernel_size=(5, 5), strides=(1, 1), padding='same', dilation_rate=(8, 8), name='as_conv12')(as_conv11)as_conv12 = BatchNormalization()(as_conv12)as_conv12 = ReLU()(as_conv12)print('as_12:', as_conv12.shape)as_conv13 = Convolution2D(96, kernel_size=(5, 5), strides=(1, 1), padding='same', dilation_rate=(16, 16), name='as_conv13')(as_conv12)as_conv13 = BatchNormalization()(as_conv13)as_conv13 = ReLU()(as_conv13)print('as_13:', as_conv13.shape)as_conv14 = Convolution2D(96, kernel_size=(5, 5), strides=(1, 1), padding='same', dilation_rate=(32, 32), name='as_conv14')(as_conv13)as_conv14 = BatchNormalization()(as_conv14)as_conv14 = ReLU()(as_conv14)print('as_14:', as_conv14.shape)as_conv15 = Convolution2D(8, kernel_size=(1, 1), strides=(1, 1), padding='same', dilation_rate=(1, 1), name='as_conv15')(as_conv14)as_conv15 = BatchNormalization()(as_conv15)as_conv15 = ReLU()(as_conv15)print('as_15:', as_conv15.shape)AS_out = Reshape((298, 8 * 257))(as_conv15)print('AS_out:', AS_out.shape)# --------------------------- AS end ---------------------------# --------------------------- VS_model start ---------------------------VS_model = Sequential()VS_model.add(Convolution2D(256, kernel_size=(7, 1), strides=(1, 1), padding='same', dilation_rate=(1, 1), name='vs_conv1'))VS_model.add(BatchNormalization())VS_model.add(ReLU())VS_model.add(Convolution2D(256, kernel_size=(5, 1), strides=(1, 1), padding='same', dilation_rate=(1, 1), name='vs_conv2'))VS_model.add(BatchNormalization())VS_model.add(ReLU())VS_model.add(Convolution2D(256, kernel_size=(5, 1), strides=(1, 1), padding='same', dilation_rate=(2, 1), name='vs_conv3'))VS_model.add(BatchNormalization())VS_model.add(ReLU())VS_model.add(Convolution2D(256, kernel_size=(5, 1), strides=(1, 1), padding='same', dilation_rate=(4, 1), name='vs_conv4'))VS_model.add(BatchNormalization())VS_model.add(ReLU())VS_model.add(Convolution2D(256, kernel_size=(5, 1), strides=(1, 1), padding='same', dilation_rate=(8, 1), name='vs_conv5'))VS_model.add(BatchNormalization())VS_model.add(ReLU())VS_model.add(Convolution2D(256, kernel_size=(5, 1), strides=(1, 1), padding='same', dilation_rate=(16, 1), name='vs_conv6'))VS_model.add(BatchNormalization())VS_model.add(ReLU())VS_model.add(Reshape((75, 256, 1)))VS_model.add(UpSampling2DBilinear((298, 256)))VS_model.add(Reshape((298, 256)))# --------------------------- VS_model end ---------------------------video_input = Input(shape=(75, 1, 1792, people_num))AVfusion_list = [AS_out]for i in range(people_num):single_input = Lambda(sliced, arguments={'index': i})(video_input)VS_out = VS_model(single_input)AVfusion_list.append(VS_out)AVfusion = concatenate(AVfusion_list, axis=2)AVfusion = TimeDistributed(Flatten())(AVfusion)print('AVfusion:', AVfusion.shape)lstm = Bidirectional(LSTM(400, input_shape=(298, 8 * 257), return_sequences=True), merge_mode='sum')(AVfusion)print('lstm:', lstm.shape)fc1 = Dense(600, name="fc1", activation='relu', kernel_initializer=he_normal(seed=27))(lstm)print('fc1:', fc1.shape)fc2 = Dense(600, name="fc2", activation='relu', kernel_initializer=he_normal(seed=42))(fc1)print('fc2:', fc2.shape)fc3 = Dense(600, name="fc3", activation='relu', kernel_initializer=he_normal(seed=65))(fc2)print('fc3:', fc3.shape)complex_mask = Dense(257 * 2 * people_num, name="complex_mask", kernel_initializer=glorot_uniform(seed=87))(fc3)print('complex_mask:', complex_mask.shape)complex_mask_out = Reshape((298, 257, 2, people_num))(complex_mask)print('complex_mask_out:', complex_mask_out.shape)AV_model = Model(inputs=[audio_input, video_input], outputs=complex_mask_out)# # compile AV_model# AV_model.compile(optimizer='adam', loss='mse')return AV_model

这个大佬太强了,自愧不如。

这篇关于Looking to Listen at the Cocktail Party 代码详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/278322

相关文章

Debezium 与 Apache Kafka 的集成方式步骤详解

《Debezium与ApacheKafka的集成方式步骤详解》本文详细介绍了如何将Debezium与ApacheKafka集成,包括集成概述、步骤、注意事项等,通过KafkaConnect,D... 目录一、集成概述二、集成步骤1. 准备 Kafka 环境2. 配置 Kafka Connect3. 安装 D

Java中ArrayList和LinkedList有什么区别举例详解

《Java中ArrayList和LinkedList有什么区别举例详解》:本文主要介绍Java中ArrayList和LinkedList区别的相关资料,包括数据结构特性、核心操作性能、内存与GC影... 目录一、底层数据结构二、核心操作性能对比三、内存与 GC 影响四、扩容机制五、线程安全与并发方案六、工程

Java调用DeepSeek API的最佳实践及详细代码示例

《Java调用DeepSeekAPI的最佳实践及详细代码示例》:本文主要介绍如何使用Java调用DeepSeekAPI,包括获取API密钥、添加HTTP客户端依赖、创建HTTP请求、处理响应、... 目录1. 获取API密钥2. 添加HTTP客户端依赖3. 创建HTTP请求4. 处理响应5. 错误处理6.

Spring Cloud LoadBalancer 负载均衡详解

《SpringCloudLoadBalancer负载均衡详解》本文介绍了如何在SpringCloud中使用SpringCloudLoadBalancer实现客户端负载均衡,并详细讲解了轮询策略和... 目录1. 在 idea 上运行多个服务2. 问题引入3. 负载均衡4. Spring Cloud Load

Springboot中分析SQL性能的两种方式详解

《Springboot中分析SQL性能的两种方式详解》文章介绍了SQL性能分析的两种方式:MyBatis-Plus性能分析插件和p6spy框架,MyBatis-Plus插件配置简单,适用于开发和测试环... 目录SQL性能分析的两种方式:功能介绍实现方式:实现步骤:SQL性能分析的两种方式:功能介绍记录

在 Spring Boot 中使用 @Autowired和 @Bean注解的示例详解

《在SpringBoot中使用@Autowired和@Bean注解的示例详解》本文通过一个示例演示了如何在SpringBoot中使用@Autowired和@Bean注解进行依赖注入和Bean... 目录在 Spring Boot 中使用 @Autowired 和 @Bean 注解示例背景1. 定义 Stud

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别详解

《如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别详解》:本文主要介绍如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别的相关资料,描述了如何使用海康威视设备网络SD... 目录前言开发流程问题和解决方案dll库加载不到的问题老旧版本sdk不兼容的问题关键实现流程总结前言作为

SQL 中多表查询的常见连接方式详解

《SQL中多表查询的常见连接方式详解》本文介绍SQL中多表查询的常见连接方式,包括内连接(INNERJOIN)、左连接(LEFTJOIN)、右连接(RIGHTJOIN)、全外连接(FULLOUTER... 目录一、连接类型图表(ASCII 形式)二、前置代码(创建示例表)三、连接方式代码示例1. 内连接(I

Python中顺序结构和循环结构示例代码

《Python中顺序结构和循环结构示例代码》:本文主要介绍Python中的条件语句和循环语句,条件语句用于根据条件执行不同的代码块,循环语句用于重复执行一段代码,文章还详细说明了range函数的使... 目录一、条件语句(1)条件语句的定义(2)条件语句的语法(a)单分支 if(b)双分支 if-else(