Rust实现基于Tokio的限制内存占用的channel

2023-10-24 20:44

本文主要是介绍Rust实现基于Tokio的限制内存占用的channel,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Rust实现基于Tokio的限制内存占用的channel

简介

本文介绍如何基于tokio的channel实现一个限制内存占用的channel。

Tokio提供了多种协程间同步的接口,用于在不同的协程中同步数据。
常用的channel有两种:boundedunbounded,其中ubbounded的channel可以无限的发送数据,而bounded的channel则有限的发送数据。两种channel都没有对自身的内存占用做出限制。

异步网络编程中常用一个channel连接两个task,其中业务task与业务交互:将要发送的数据发送到channel,而网络task与操作系统交互:从channel中接收数据并写入socket。单有时候带宽有限或者对端接收速率过慢时,而网络task从channel中接收的速度小于业务task向channel中发送的速度时,会造成大量的数据阻塞在channel中,如果不对channel的占用内存做限制,则会造成内存占用过多甚至进程被OOM

实现

  1. 获取数据大小

    要想限制channel总的内存占用,必须要直到每个数据的大小。比较常见的作法是所有需要发送到channel的内容都必须实现一个Trait,此Trait中定义了一个get_size方法,用于获取数据的大小。

    pub trait GetSize {/// get total sizefn get_size(&self) -> usize;
    }
    

    要发送的内容必须实现GetSize的Trait,并实现get_size方法。注意:get_size方法获取到的大小需包括栈空间和堆空间,例如:

     struct MyData {data: Vec<u8>,}impl GetSize for MyData {fn get_size(&self) -> usize {return std::mem::size_of::<MyData>() + self.data.len();//stack size + heap size}}
    
  2. 创建SizedSenderSizedReceiver

    SizedSenderSizedReceiver都可以基于tokio的UnboundedSenderUnboundedReceiver实现。在tokio的基础上,需要共享一个条件变量用于在sender和receiver之间同步当前是否还有可用空间。

       
    pub struct SizedSender<T: GetSize> {inner: mpsc::UnboundedSender<T>,size_semaphore: Arc<(Semaphore, usize)>,
    }   pub struct SizedReceiver<T: GetSize> {inner: mpsc::UnboundedReceiver<T>,size_semaphore: Arc<(Semaphore, usize)>,
    }/// Limit space usage but not limit the number of messages, bytes_size must bigger than 0.
    pub fn sized_channel<T: GetSize>(bytes_size: usize) -> (SizedSender<T>, SizedReceiver<T>) {let (tx, rx) = mpsc::unbounded_channel::<T>();let semaphore = Arc::new((Semaphore::new(bytes_size), bytes_size));(SizedSender::new(tx, semaphore.clone()),SizedReceiver::new(rx, semaphore),)
    }          
  3. SizedSender实现

    发送端发送时需要调用get_size方法获取数据的大小,然后调用Semaphore::available_permits方法获取可用空间,如果可用空间大于数据大小,则发送成功,否则发送失败。

    impl<T: GetSize> SizedSender<T> {pub fn new(inner: mpsc::UnboundedSender<T>, size_semaphore: Arc<(Semaphore, usize)>) -> Self {Self {inner,size_semaphore,}}fn do_send(&self,message: T,permits: Option<SemaphorePermit<'_>>,) -> Result<(), SendError<T>> {match self.inner.send(message) {Ok(r) => {if let Some(permits) = permits {permits.forget();}Ok(r)}Err(e) => {log::debug!("send value error!");Err(e)}}}pub async fn send(&self, message: T) -> Result<(), SendError<T>> {let message_size = message.get_size();if message_size > self.size_semaphore.1 {return Err(SendError(message));}let size = match u32::try_from(message_size) {Ok(size) => size,Err(_) => {return Err(SendError(message));}};if self.size_semaphore.0.available_permits() < size as usize {// The buffer is about to be depleted, sending may be blocked.}let permits = match self.size_semaphore.0.acquire_many(size).await {Ok(perimits) => Some(perimits),Err(_) => {return Err(SendError(message));}};self.do_send(message, permits)}}
    
  4. SizedReceiver的实现

    接收端接收时需要调用get_size方法获取数据的大小,然后将相应大小的permits还给信号量即可。

    impl<T: GetSize> SizedReceiver<T> {
    pub fn new(inner: mpsc::UnboundedReceiver<T>, size_semaphore: Arc<(Semaphore, usize)>) -> Self {Self {inner,size_semaphore,}
    }pub async fn recv(&mut self) -> Option<T> {self.inner.recv().await.map(|r| {let message_size = r.get_size();self.size_semaphore.0.add_permits(message_size);r})
    }
    }
  5. 其他

    在上述实现的基础上,还可以实现更多方法,比如try_sendtry_recv等。

这篇关于Rust实现基于Tokio的限制内存占用的channel的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/277655

相关文章

Linux下删除乱码文件和目录的实现方式

《Linux下删除乱码文件和目录的实现方式》:本文主要介绍Linux下删除乱码文件和目录的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录linux下删除乱码文件和目录方法1方法2总结Linux下删除乱码文件和目录方法1使用ls -i命令找到文件或目录

SpringBoot+EasyExcel实现自定义复杂样式导入导出

《SpringBoot+EasyExcel实现自定义复杂样式导入导出》这篇文章主要为大家详细介绍了SpringBoot如何结果EasyExcel实现自定义复杂样式导入导出功能,文中的示例代码讲解详细,... 目录安装处理自定义导出复杂场景1、列不固定,动态列2、动态下拉3、自定义锁定行/列,添加密码4、合并

mybatis执行insert返回id实现详解

《mybatis执行insert返回id实现详解》MyBatis插入操作默认返回受影响行数,需通过useGeneratedKeys+keyProperty或selectKey获取主键ID,确保主键为自... 目录 两种方式获取自增 ID:1. ​​useGeneratedKeys+keyProperty(推

Spring Boot集成Druid实现数据源管理与监控的详细步骤

《SpringBoot集成Druid实现数据源管理与监控的详细步骤》本文介绍如何在SpringBoot项目中集成Druid数据库连接池,包括环境搭建、Maven依赖配置、SpringBoot配置文件... 目录1. 引言1.1 环境准备1.2 Druid介绍2. 配置Druid连接池3. 查看Druid监控

Linux在线解压jar包的实现方式

《Linux在线解压jar包的实现方式》:本文主要介绍Linux在线解压jar包的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录linux在线解压jar包解压 jar包的步骤总结Linux在线解压jar包在 Centos 中解压 jar 包可以使用 u

Android kotlin中 Channel 和 Flow 的区别和选择使用场景分析

《Androidkotlin中Channel和Flow的区别和选择使用场景分析》Kotlin协程中,Flow是冷数据流,按需触发,适合响应式数据处理;Channel是热数据流,持续发送,支持... 目录一、基本概念界定FlowChannel二、核心特性对比数据生产触发条件生产与消费的关系背压处理机制生命周期

c++ 类成员变量默认初始值的实现

《c++类成员变量默认初始值的实现》本文主要介绍了c++类成员变量默认初始值,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录C++类成员变量初始化c++类的变量的初始化在C++中,如果使用类成员变量时未给定其初始值,那么它将被

Qt使用QSqlDatabase连接MySQL实现增删改查功能

《Qt使用QSqlDatabase连接MySQL实现增删改查功能》这篇文章主要为大家详细介绍了Qt如何使用QSqlDatabase连接MySQL实现增删改查功能,文中的示例代码讲解详细,感兴趣的小伙伴... 目录一、创建数据表二、连接mysql数据库三、封装成一个完整的轻量级 ORM 风格类3.1 表结构

基于Python实现一个图片拆分工具

《基于Python实现一个图片拆分工具》这篇文章主要为大家详细介绍了如何基于Python实现一个图片拆分工具,可以根据需要的行数和列数进行拆分,感兴趣的小伙伴可以跟随小编一起学习一下... 简单介绍先自己选择输入的图片,默认是输出到项目文件夹中,可以自己选择其他的文件夹,选择需要拆分的行数和列数,可以通过

Python中将嵌套列表扁平化的多种实现方法

《Python中将嵌套列表扁平化的多种实现方法》在Python编程中,我们常常会遇到需要将嵌套列表(即列表中包含列表)转换为一个一维的扁平列表的需求,本文将给大家介绍了多种实现这一目标的方法,需要的朋... 目录python中将嵌套列表扁平化的方法技术背景实现步骤1. 使用嵌套列表推导式2. 使用itert