TFHE 的全同态模结构(FHE Module Structure)

2023-10-24 09:28

本文主要是介绍TFHE 的全同态模结构(FHE Module Structure),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

参考文献:

  1. [CGGI20] Chillotti I, Gama N, Georgieva M, et al. TFHE: fast fully homomorphic encryption over the torus[J]. Journal of Cryptology, 2020, 33(1): 34-91.
  2. [BGGJ20] Boura C, Gama N, Georgieva M, et al. Chimera: Combining ring-lwe-based fully homomorphic encryption schemes[J]. Journal of Mathematical Cryptology, 2020, 14(1): 316-338.

文章目录

  • Notation
  • TLWE
  • TRLWE
  • TGSW
  • TRGSW
  • FHE Module Structure

Notation

代数结构:

  • 实数环面 T = R / Z = [ 0 , 1 ) \mathbb T = \mathbb R/\mathbb Z = [0,1) T=R/Z=[0,1)
  • 整系数多项式环 R = Z [ x ] / ( x N + 1 ) R = \mathbb Z[x]/(x^N+1) R=Z[x]/(xN+1)
  • 系数取自整环 A ∈ { Z , R , C } A \in \{\mathbb Z,\mathbb R,\mathbb C\} A{Z,R,C},多项式环 R A = R ⊗ Z A = A [ x ] / ( x N + 1 ) R_A = R \otimes_\mathbb Z A=A[x]/(x^N+1) RA=RZA=A[x]/(xN+1)
  • 商环 R q = R / q R = Z q [ x ] / ( x N + 1 ) R_q=R/qR = \mathbb Z_q[x]/(x^N+1) Rq=R/qR=Zq[x]/(xN+1),自然满射 π q : R → R q \pi_q:R \to R_q πq:RRq 是同态
  • 商群 T R = R R / R Z = T [ x ] / ( x N + 1 ) \mathbb T_R = R_\mathbb R/R_\mathbb Z = \mathbb T[x]/(x^N+1) TR=RR/RZ=T[x]/(xN+1),它是 R R R 左模(但不是环),环 R R R 左作用 T R \mathbb T_R TR 称为 “外积”

Lipschitz 函数:斜率绝对值不大于 κ \kappa κ,因此被两个一次函数夹逼。

集中分布(concentrated distributions):除了可忽略的测度,概率分布的支撑集是某个半径 1 / 2 1/2 1/2 球体的子集;此时,这个实数环面上的概率分布是良的,存在良定义的期望、标准差。

TLWE

底层的代数结构,

  • 秘钥空间: B ⊆ Z N \mathcal B \subseteq \mathbb Z^N BZN,小范数的整数向量集合
  • 明文空间: T \mathbb T T,是 Z \mathbb Z Z 模(不是环,乘法未定义
  • 密文空间: T N × T = T N + 1 \mathbb T^N \times \mathbb T = \mathbb T^{N+1} TN×T=TN+1,是 Z \mathbb Z Z 模(无法被 T \mathbb T T 作用,同态乘法不自然)
  • 相位函数: ϕ s : ( a , b ) ↦ b − s t a \phi_s: (a,b) \mapsto b-s^ta ϕs:(a,b)bsta,是 κ \kappa κ Lipschitz 函数,其中 κ \kappa κ 很小(关于环面上 l ∞ l_\infty l 范数)

不考虑(具有同态性质的)纠错码,

对称密钥:

  1. 均匀采样 s ← B s \gets \mathcal B sB,它是整系数的短向量

加密:

  1. 明文 μ ∈ T \mu \in \mathbb T μT
  2. 均匀采样 a ← T N a \gets \mathbb T^N aTN,零中心高斯采样 e ← T e \gets \mathbb T eT
  3. 计算 b : = s t a + e ∈ T b := s^ta+e \in \mathbb T b:=sta+eT,满足 ϕ s ( a , b ) = e ≈ 0 \phi_s(a,b)=e \approx 0 ϕs(a,b)=e0
  4. 密文 c : = ( a , b ) + ( 0 , μ ) c:=(a,b)+(0,\mu) c:=(a,b)+(0,μ) 是长度 N + 1 N+1 N+1 的列向量

解密:

  1. 密文 ( a , b ′ ) ∈ T N × T (a,b') \in \mathbb T^N \times \mathbb T (a,b)TN×T
  2. 计算 ϕ s ( a , b ′ ) = e + μ ∈ T \phi_s(a,b') = e+\mu \in \mathbb T ϕs(a,b)=e+μT
  3. 带噪明文 μ + e \mu+e μ+e 是一个随机变量,均值是 μ \mu μ

同态运算:

  1. 根据 Z \mathbb Z Z 模的加法, μ 1 + μ 2 ⟺ c 1 + c 2 \mu_1+\mu_2 \iff c_1+c_2 μ1+μ2c1+c2
  2. 根据 Z \mathbb Z Z 模的环作用, k ⋅ μ ⟺ k ⋅ c k \cdot \mu \iff k \cdot c kμkc,其中 k ∈ Z k \in \mathbb Z kZ
  3. 不支持乘法运算(BGV/BFV 的密文张量积不自然)

TRLWE

底层的代数结构,

  • 秘钥空间: B ⊆ R \mathcal B \subseteq R BR,小范数的整系数多项式集合
  • 明文空间: T R \mathbb T_R TR,是 R R R 模(不是环,乘法未定义
  • 密文空间: T R × T R = T R 2 \mathbb T_R \times \mathbb T_R = \mathbb T_R^2 TR×TR=TR2,是 R R R 模(无法被 T R \mathbb T_R TR 作用,同态乘法不自然)
  • 相位函数: ϕ s : ( a , b ) ↦ b − s ⋅ a \phi_s: (a,b) \mapsto b-s\cdot a ϕs:(a,b)bsa,是 κ \kappa κ Lipschitz 函数,其中 κ \kappa κ 很小(关于环面上 l ∞ l_\infty l 范数)

不考虑(具有同态性质的)纠错码,

对称密钥:

  1. 均匀采样 s ← B s \gets \mathcal B sB,它是短的整系数多项式

加密:

  1. 明文 μ ∈ T R \mu \in \mathbb T_R μTR
  2. 均匀采样 a ← T R a \gets \mathbb T_R aTR,零中心高斯采样 e ← T R e \gets \mathbb T_R eTR
  3. 计算 b : = s ⋅ a + e ∈ T R b := s\cdot a+e \in \mathbb T_R b:=sa+eTR,满足 ϕ s ( a , b ) = e ≈ 0 \phi_s(a,b)=e \approx 0 ϕs(a,b)=e0
  4. 密文 c : = ( a , b ) + ( 0 , μ ) c:=(a,b)+(0,\mu) c:=(a,b)+(0,μ) 是长度 2 2 2 的列向量

解密:

  1. 密文 ( a , b ′ ) ∈ T R × T R (a,b') \in \mathbb T_R \times \mathbb T_R (a,b)TR×TR
  2. 计算 ϕ s ( a , b ′ ) = e + μ ∈ T R \phi_s(a,b') = e+\mu \in \mathbb T_R ϕs(a,b)=e+μTR
  3. 带噪明文 μ + e \mu+e μ+e 是一个随机变量,均值是 μ \mu μ

同态运算:

  1. 根据 R R R 模的加法, μ 1 + μ 2 ⟺ c 1 + c 2 \mu_1+\mu_2 \iff c_1+c_2 μ1+μ2c1+c2
  2. 根据 R R R 模的环作用, k ⋅ μ ⟺ k ⋅ c k \cdot \mu \iff k \cdot c kμkc,其中 k ∈ R k \in R kR
  3. 不支持乘法运算(BGV/BFV 的密文张量积不自然)

TGSW

底层的代数结构,

  • 秘钥空间: B ⊆ Z N \mathcal B \subseteq \mathbb Z^N BZN,小范数的整数向量集合
  • 明文空间: Z \mathbb Z Z,是整数环(定义了乘法
  • 密文空间: T N × ( N + 1 ) l × T N l = T ( N + 1 ) × ( N + 1 ) l \mathbb T^{N\times (N+1)l} \times \mathbb T^{Nl}=\mathbb T^{(N+1) \times (N+1)l} TN×(N+1)l×TNl=T(N+1)×(N+1)l,是 Z \mathbb Z Z 模(同态乘法自然)
  • 相位函数: ϕ s : ( A , b ) ↦ b − s t A \phi_s: (A,b) \mapsto b-s^tA ϕs:(A,b)bstA,是 κ \kappa κ Lipschitz 函数,其中 κ \kappa κ 很小(关于环面上 l ∞ l_\infty l 范数)

采用 Gadget 纠错码,设置行向量 g = [ 2 − 1 , 2 − 2 , ⋯ , 2 − l ] g=[2^{-1},2^{-2},\cdots,2^{-l}] g=[21,22,,2l],其中 l l l 是实数环面的离散化精度 2 − l Z / Z ⊆ T 2^{-l}\mathbb Z/\mathbb Z \subseteq \mathbb T 2lZ/ZT
G = I N + 1 ⊗ g = [ g g ⋱ g ] ∈ Z ( N + 1 ) × ( N + 1 ) l G = I_{N+1} \otimes g = \begin{bmatrix} g&\\ &g&\\ &&\ddots&\\ &&& g \end{bmatrix} \in \mathbb Z^{(N+1) \times (N+1)l} G=IN+1g= ggg Z(N+1)×(N+1)l

对应的逆变换 G − 1 G^{-1} G1 是个随机化程序,满足 ∥ G G − 1 ( C ) − C ∥ ∞ ≤ 2 − ( l + 1 ) \|GG^{-1}(C)-C\|_\infty \le 2^{-(l+1)} GG1(C)C2(l+1),对于任意的 C ∈ T ( N + 1 ) × ( N + 1 ) l C \in \mathbb T^{(N+1) \times (N+1)l} CT(N+1)×(N+1)l

对称密钥:

  1. 均匀采样 s ← B s \gets \mathcal B sB,它是整系数的短向量

加密:

  1. 明文 μ ∈ Z \mu \in \mathbb Z μZ,编码为有限精度的环面矩阵 μ G ∈ T ( N + 1 ) × ( N + 1 ) l \mu G \in \mathbb T^{(N+1) \times (N+1)l} μGT(N+1)×(N+1)l
  2. 均匀采样 A ← T N × ( N + 1 ) l A \gets \mathbb T^{N \times (N+1)l} ATN×(N+1)l,零中心高斯采样 e ← T ( N + 1 ) l e \gets \mathbb T^{(N+1)l} eT(N+1)l(行向量)
  3. 计算 b : = s t A + e ∈ T ( N + 1 ) l b := s^tA+e \in \mathbb T^{(N+1)l} b:=stA+eT(N+1)l(行向量),满足 ϕ s ( A , b ) = e ≈ 0 \phi_s(A,b)=e \approx 0 ϕs(A,b)=e0
  4. 密文 c : = [ A b ] + μ G c:=\begin{bmatrix}A\\b\end{bmatrix}+\mu G c:=[Ab]+μG

解密:

  1. 密文 [ A ′ b ′ ] ∈ T ( N + 1 ) × ( N + 1 ) l \begin{bmatrix}A'\\b'\end{bmatrix} \in \mathbb T^{(N+1) \times (N+1)l} [Ab]T(N+1)×(N+1)l
  2. 计算 ϕ s ( A ′ , b ′ ) = e + μ ( − s , 1 ) G ∈ T ( N + 1 ) l \phi_s(A',b') = e+\mu (-s,1)G \in \mathbb T^{(N+1)l} ϕs(A,b)=e+μ(s,1)GT(N+1)l(行向量)
  3. 截取长度 l l l 的尾巴,得到的 e ′ + μ g ∈ T l e'+\mu g \in \mathbb T^l e+μgTl 是含噪码字,均值 μ g \mu g μg

同态运算:

  1. 根据 Z \mathbb Z Z 模的加法, μ 1 + μ 2 ⟺ c 1 + c 2 \mu_1+\mu_2 \iff c_1+c_2 μ1+μ2c1+c2

  2. 根据 Z \mathbb Z Z 模的环作用, k ⋅ μ ⟺ k ⋅ c k \cdot \mu \iff k \cdot c kμkc,其中 k ∈ Z k \in \mathbb Z kZ

  3. 同态乘法,明文空间 μ 1 ∈ Z \mu_1 \in \mathbb Z μ1Z 对于密文空间 G − 1 ( μ 2 G ) ∈ T ( N + 1 ) × ( N + 1 ) l G^{-1}(\mu_2G) \in \mathbb T^{(N+1) \times (N+1)l} G1(μ2G)T(N+1)×(N+1)l环作用
    C 1 ⋅ G − 1 ( C 2 ) = ( [ A 1 ∣ b 1 ] + μ 1 G ) ⋅ G − 1 ( ( [ A 2 ∣ b 2 ] + μ 2 G ) ) = ( [ A 1 ∣ b 1 ] ⋅ G − 1 ( C 2 ) + μ 1 C 2 ) + μ 1 μ 2 G \begin{aligned} &\,\, C_1 \cdot G^{-1}(C_2)\\ =&\,\, ([A_1|b_1]+\mu_1 G) \cdot G^{-1}(([A_2|b_2]+\mu_2 G))\\ =&\,\, \left([A_1|b_1] \cdot G^{-1}(C_2) + \mu_1C_2\right) + \mu_1\mu_2G \end{aligned} ==C1G1(C2)([A1b1]+μ1G)G1(([A2b2]+μ2G))([A1b1]G1(C2)+μ1C2)+μ1μ2G

    它的噪声增长是不平衡的,导出了乘法链的右结合性。

TRGSW

底层的代数结构,

  • 秘钥空间: B ⊆ R \mathcal B \subseteq R BR,小范数的整系数多项式集合
  • 明文空间: R R R,是整系数多项式环(定义了乘法
  • 密文空间: T R 2 l × T R 2 l = T R 2 × 2 l \mathbb T_R^{2l} \times \mathbb T_R^{2l} = \mathbb T_R^{2 \times 2l} TR2l×TR2l=TR2×2l,是 R R R 模(同态乘法自然)
  • 相位函数: ϕ s : ( A , b ) ↦ b − s A \phi_s: (A,b) \mapsto b-sA ϕs:(A,b)bsA,是 κ \kappa κ Lipschitz 函数,其中 κ \kappa κ 很小(关于环面上 l ∞ l_\infty l 范数)

采用 Gadget 纠错码,设置 g = [ 2 − 1 , 2 − 2 , ⋯ , 2 − l ] g=[2^{-1},2^{-2},\cdots,2^{-l}] g=[21,22,,2l] 是行向量,其中 l l l 是环面的离散化精度 2 − l R Z / R Z ⊆ T R 2^{-l}R_\mathbb Z /R_\mathbb Z \subseteq \mathbb T_R 2lRZ/RZTR
G = g ⊗ I 2 = [ I , 2 I , ⋯ , 2 − l I ] ∈ T R 2 × 2 l G = g \otimes I_2 = \begin{bmatrix} I, 2I, \cdots, 2^{-l}I \end{bmatrix} \in \mathbb T_R^{2 \times 2l} G=gI2=[I,2I,,2lI]TR2×2l

对应的逆变换 G − 1 G^{-1} G1 是个随机化程序,满足 ∥ G G − 1 ( C ) − C ∥ ∞ ≤ 2 − ( l + 1 ) \|GG^{-1}(C)-C\|_\infty \le 2^{-(l+1)} GG1(C)C2(l+1),对于任意的 C ∈ T R 2 l × 2 C \in \mathbb T_R^{2l \times 2} CTR2l×2

对称密钥:

  1. 均匀采样 s ← B s \gets \mathcal B sB,它是短的整系数多项式

加密:

  1. 明文 μ ∈ R \mu \in R μR,编码为有限精度的环面矩阵 μ G ∈ T R 2 × 2 l \mu G \in \mathbb T_R^{2\times 2l} μGTR2×2l
  2. 均匀采样 A ← T R 2 l A \gets \mathbb T_R^{2l} ATR2l(行向量),零中心高斯采样 e ← T R 2 l e \gets \mathbb T_R^{2l} eTR2l(行向量)
  3. 计算 b : = s A + e ∈ T R N l b := sA+e \in \mathbb T_R^{Nl} b:=sA+eTRNl(行向量),满足 ϕ s ( A , b ) = e ≈ 0 \phi_s(A,b)=e \approx 0 ϕs(A,b)=e0
  4. 密文 c : = [ A b ] + μ G c:=\begin{bmatrix}A\\b\end{bmatrix}+\mu G c:=[Ab]+μG

解密:

  1. 密文 ( A ′ , b ′ ) ∈ T R 2 l × T R 2 l (A',b') \in \mathbb T_R^{2l} \times \mathbb T_R^{2l} (A,b)TR2l×TR2l
  2. 计算 ϕ s ( A ′ , b ′ ) = e + μ ( − s , 1 ) G ∈ T R 2 l \phi_s(A',b') = e+\mu(-s,1)G \in \mathbb T_R^{2l} ϕs(A,b)=e+μ(s,1)GTR2l(行向量)
  3. 截取索引 2 , 4 , ⋯ , 2 l 2,4,\cdots,2l 2,4,,2l 的元素,得到的 e ′ + μ g ∈ T R l e'+\mu g \in \mathbb T_R^l e+μgTRl 是含噪码字,均值 μ g \mu g μg

同态运算:

  1. 根据 R R R 模的加法, μ 1 + μ 2 ⟺ C 1 + C 2 \mu_1+\mu_2 \iff C_1+C_2 μ1+μ2C1+C2

  2. 根据 R R R 模的环作用, k ⋅ μ ⟺ k ⋅ C k \cdot \mu \iff k \cdot C kμkC,其中 k ∈ R k \in R kR

  3. 同态乘法,明文空间 μ 1 ∈ R \mu_1 \in R μ1R 对于密文空间 G − 1 ( μ 2 G ) ∈ T R 2 × 2 l G^{-1}(\mu_2G) \in \mathbb T_R^{2 \times 2l} G1(μ2G)TR2×2l环作用
    C 1 ⋅ G − 1 ( C 2 ) = ( [ A 1 ∣ b 1 ] + μ 1 G ) ⋅ G − 1 ( ( [ A 2 ∣ b 2 ] + μ 2 G ) ) = ( [ A 1 ∣ b 1 ] ⋅ G − 1 ( C 2 ) + μ 1 C 2 ) + μ 1 μ 2 G \begin{aligned} &\,\, C_1 \cdot G^{-1}(C_2)\\ =&\,\, ([A_1|b_1]+\mu_1 G) \cdot G^{-1}(([A_2|b_2]+\mu_2 G))\\ =&\,\, \left([A_1|b_1] \cdot G^{-1}(C_2) + \mu_1C_2\right) + \mu_1\mu_2G \end{aligned} ==C1G1(C2)([A1b1]+μ1G)G1(([A2b2]+μ2G))([A1b1]G1(C2)+μ1C2)+μ1μ2G

    它的噪声增长是不平衡的,导出了乘法链的右结合性。

FHE Module Structure

非正式地,全同态模结构是五元元组 ( R , Π R , M , Π M , ⊡ ) (R,\Pi_R,M,\Pi_M,\boxdot) (R,ΠR,M,ΠM,)

  1. R R R加密方案 Π R = ( E n c R , D e c R ) \Pi_R=(Enc_R,Dec_R) ΠR=(EncR,DecR),它的密文空间是 C R \mathcal C_R CR

  2. M M M同态加密方案 Π M = ( E n c M , D e c M ) \Pi_M=(Enc_M,Dec_M) ΠM=(EncM,DecM),它的密文空间是 C M \mathcal C_M CM

  3. 两个方案的密文之间的运算 ⊡ : C R × C M → C M \boxdot: \mathcal C_R \times \mathcal C_M \to \mathcal C_M :CR×CMCM外积),使得
    D e c M ( E n c R ( r ) ⊡ E n c M ( m ) ) = r ⋅ m , ∀ r ∈ R , ∀ m ∈ M Dec_M(Enc_R(r) \boxdot Enc_M(m)) = r \cdot m,\forall r \in R,\forall m \in M DecM(EncR(r)EncM(m))=rm,rR,mM

TFHE 就是让 TGSW 和 TLWETRGSW 和 TRLWE 组成了全同态模结构,从而实现了 “外积”,

  • 元组 ( ( Z , TGSW ) , ( T , TLWE ) ) ((\mathbb Z,\text{TGSW}),(\mathbb T,\text{TLWE})) ((Z,TGSW),(T,TLWE)),组成了环 Z \mathbb Z Z T \mathbb T T 的全同态模结构
  • 元组 ( ( R , TRGSW ) , ( T R , TRLWE ) ) ((R,\text{TRGSW}),(\mathbb T_R,\text{TRLWE})) ((R,TRGSW),(TR,TRLWE)),组成了环 R R R T R \mathbb T_R TR 的全同态模结构

这篇关于TFHE 的全同态模结构(FHE Module Structure)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/274221

相关文章

使用Java实现通用树形结构构建工具类

《使用Java实现通用树形结构构建工具类》这篇文章主要为大家详细介绍了如何使用Java实现通用树形结构构建工具类,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录完整代码一、设计思想与核心功能二、核心实现原理1. 数据结构准备阶段2. 循环依赖检测算法3. 树形结构构建4. 搜索子

利用Python开发Markdown表格结构转换为Excel工具

《利用Python开发Markdown表格结构转换为Excel工具》在数据管理和文档编写过程中,我们经常使用Markdown来记录表格数据,但它没有Excel使用方便,所以本文将使用Python编写一... 目录1.完整代码2. 项目概述3. 代码解析3.1 依赖库3.2 GUI 设计3.3 解析 Mark

Python中ModuleNotFoundError: No module named ‘timm’的错误解决

《Python中ModuleNotFoundError:Nomodulenamed‘timm’的错误解决》本文主要介绍了Python中ModuleNotFoundError:Nomodulen... 目录一、引言二、错误原因分析三、解决办法1.安装timm模块2. 检查python环境3. 解决安装路径问题

mysql通过frm和ibd文件恢复表_mysql5.7根据.frm和.ibd文件恢复表结构和数据

《mysql通过frm和ibd文件恢复表_mysql5.7根据.frm和.ibd文件恢复表结构和数据》文章主要介绍了如何从.frm和.ibd文件恢复MySQLInnoDB表结构和数据,需要的朋友可以参... 目录一、恢复表结构二、恢复表数据补充方法一、恢复表结构(从 .frm 文件)方法 1:使用 mysq

Python中顺序结构和循环结构示例代码

《Python中顺序结构和循环结构示例代码》:本文主要介绍Python中的条件语句和循环语句,条件语句用于根据条件执行不同的代码块,循环语句用于重复执行一段代码,文章还详细说明了range函数的使... 目录一、条件语句(1)条件语句的定义(2)条件语句的语法(a)单分支 if(b)双分支 if-else(

使用Navicat工具比对两个数据库所有表结构的差异案例详解

《使用Navicat工具比对两个数据库所有表结构的差异案例详解》:本文主要介绍如何使用Navicat工具对比两个数据库test_old和test_new,并生成相应的DDLSQL语句,以便将te... 目录概要案例一、如图两个数据库test_old和test_new进行比较:二、开始比较总结概要公司存在多

nginx-rtmp-module模块实现视频点播的示例代码

《nginx-rtmp-module模块实现视频点播的示例代码》本文主要介绍了nginx-rtmp-module模块实现视频点播,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习... 目录预置条件Nginx点播基本配置点播远程文件指定多个播放位置参考预置条件配置点播服务器 192.

nginx-rtmp-module构建流媒体直播服务器实战指南

《nginx-rtmp-module构建流媒体直播服务器实战指南》本文主要介绍了nginx-rtmp-module构建流媒体直播服务器实战指南,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有... 目录1. RTMP协议介绍与应用RTMP协议的原理RTMP协议的应用RTMP与现代流媒体技术的关系2

Java中switch-case结构的使用方法举例详解

《Java中switch-case结构的使用方法举例详解》:本文主要介绍Java中switch-case结构使用的相关资料,switch-case结构是Java中处理多个分支条件的一种有效方式,它... 目录前言一、switch-case结构的基本语法二、使用示例三、注意事项四、总结前言对于Java初学者

结构体和联合体的区别及说明

《结构体和联合体的区别及说明》文章主要介绍了C语言中的结构体和联合体,结构体是一种自定义的复合数据类型,可以包含多个成员,每个成员可以是不同的数据类型,联合体是一种特殊的数据结构,可以在内存中共享同一... 目录结构体和联合体的区别1. 结构体(Struct)2. 联合体(Union)3. 联合体与结构体的