STM32的CRL CRH ODR BRR BSRR寄存器(逐句解析)

2023-10-24 08:59

本文主要是介绍STM32的CRL CRH ODR BRR BSRR寄存器(逐句解析),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 一 端口配置寄存器(GPIOx_CRL GPIOx_CRH

这两个寄存器都是 GPIO 口配置寄存器, CRL 控制端口的低八位, CRH 控制端口的
高八位。寄存器的作用是控制 GPIO 口的工作模式和工作速度。
每组 GPIO 下有 16 IO 口,一个寄存器共 32 位,每 4 个位控制 1 IO如图
所以才需要两个寄存器完成。
比如 GPIOA_CRL 的复位值是 0x44444444 4 位为一个单位都是 0100,一共八个0100 ,以寄存器低四位说明一下。
首先位 1 0 00 即:设置  PA0 为输入模式,如图
3 2 01 即:设置为浮空输入模式,如图
所以假如 GPIOA_CRL 的值是 0x44444444 ,那么 PA0~PA7 都是设置为输入模式,而
且是浮空输入模式。也就是说每一个框内设置的都是00:输入模式   01:浮空输入模式
上面这 2 个配置寄存器就是用来配置 GPIO 的相关工作模式和工作速度,它们通过不同的
配置组合方法,就决定我们所说的 8 种工作模式。
00 :模拟输入模式
01 :浮空输入模式 ( 复位后的状态 )
10 :上拉 / 下拉输入模式
在输出模式 (MODE[1:0]>00)
00 :通用推挽输出模式
01 :通用开漏输出模式
10 :复用功能推挽输出模式
11 :复用功能开漏输出模式
当MODE选择00,CNF为选择10时,代表着上拉/下拉输入模式。到底是上拉还是下拉呢?此时需要PxODR(端口输出数据寄存器)来确定,0为下拉输入,1为上拉输入。

二 端口输出数据寄存器(GPIOx_ODR

该寄存器用于控制 GPIOx 的输出高电平或者低电平。
也就是说既能控制管脚为高电平,也能控制管脚为低电平。管脚对于位写1,GPIO 管脚为高电平,写 0 则为低电平。不过缺点是:会因中断而打断,关闭中断明显会延迟或丢失一事件的捕获,所以控制GPIO的状态最好还是用BSRR和BRR。

三 端口输入数据寄存器(GPIOx_IDR

IDR寄存器低16位,每个位控制该组GPIO口的一个IO口,对应的是该IO口的输入电平。在输入模式下,可以读取I/O端口的电平值;在输出模式下,也可以读取I/O端口的电平值(在开漏输出时,读取到的I/O端口的电平值,不一定就是输出的电平值)

四 端口置位/复位寄存器(GPIOx_BSRR

该寄存器也用于控制 GPIOx 的输出高电平或者低电平。
问:既然ODR 和 BSRR都用于控制GPIOx的输出高电平或低电平,为什么有了 ODR 寄存器,还要这个 BSRR 寄存器呢?
答:因为 BSRR 是只写权限,而 ODR 是可读可写权限。BSRR 寄存器 32 位有效。
对于低 16 位( 0- 15),往相应的位写 1(BSy=1) ,那么对应的 IO 口会输出高电平,往相应的位写 0(BSy=0) , 对 IO 口没有任何影响,
16 位( 16-31 ),对相应的位写 1(BRy=1) 会输出低电平,写 0(BRy=0) 没有任何影响, y=0~15 。 也就是说,对于 BSRR 寄存器,你写 0 的话,对 IO 口电平是没有任何影响的。
因此要设置某个IO 口电平,只需要相关位设置为 1 即可。而 ODR 寄存器,要设置某个 IO 口电平, 首先需要读出来 ODR 寄存器的值,然后对整个 ODR 寄存器重新赋值来达到设置某个或者某些 IO 口的目的,而 BSRR 寄存器直接设置即可,这在多任务实时操作系统中作用很大。 BSRR寄存器还有一个好处,就是 BSRR 寄存器改变引脚状态的时候,不会被中断打断,而 ODR 寄存器有被中断打断的风险。

五 端口位清除寄存器(GPIOx_BRR) 

该寄存器只能改变管脚状态为低电平。 往相应的位写 1(BRy=1) ,那么对应的 IO 口会输出低电平,往相应的位写 0(BSy=0) , 对 IO 口没有任何影响,

GPIOx为(0..15)中任意接口
有了GPIOx->BRR清除寄存器,并且与GPIOx->BSRR高16为功能相同
假如你想在一个操作中对GPIOE的位1置'1',位15置'0',则使用BSRR非常方便:
GPIOE->BSRR = 0x80000002;
低16位中的0002将位1置‘1’( 低 16 ,对相应的位写 1 ,那么对应的 IO 口会输出高电平)高16位中的8000将位15置清零( 16 ,对相应的位写 1,那么对应的 IO 口会输出低电平),一步就可以做到。
如果没有BSRR的高16位,则要分2次操作,结果造成位1和位15的变化不同步
GPIOE->BSRR = 0x02;
GPIOE->BRR = 0x8000;

这篇关于STM32的CRL CRH ODR BRR BSRR寄存器(逐句解析)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/274094

相关文章

MySQL字符串转数值的方法全解析

《MySQL字符串转数值的方法全解析》在MySQL开发中,字符串与数值的转换是高频操作,本文从隐式转换原理、显式转换方法、典型场景案例、风险防控四个维度系统梳理,助您精准掌握这一核心技能,需要的朋友可... 目录一、隐式转换:自动但需警惕的&ld编程quo;双刃剑”二、显式转换:三大核心方法详解三、典型场景

SQL 注入攻击(SQL Injection)原理、利用方式与防御策略深度解析

《SQL注入攻击(SQLInjection)原理、利用方式与防御策略深度解析》本文将从SQL注入的基本原理、攻击方式、常见利用手法,到企业级防御方案进行全面讲解,以帮助开发者和安全人员更系统地理解... 目录一、前言二、SQL 注入攻击的基本概念三、SQL 注入常见类型分析1. 基于错误回显的注入(Erro

C++ 多态性实战之何时使用 virtual 和 override的问题解析

《C++多态性实战之何时使用virtual和override的问题解析》在面向对象编程中,多态是一个核心概念,很多开发者在遇到override编译错误时,不清楚是否需要将基类函数声明为virt... 目录C++ 多态性实战:何时使用 virtual 和 override?引言问题场景判断是否需要多态的三个关

Springboot主配置文件解析

《Springboot主配置文件解析》SpringBoot主配置文件application.yml支持多种核心值类型,包括字符串、数字、布尔值等,文章详细介绍了Profile环境配置和加载位置,本文... 目录Profile环境配置配置文件加载位置Springboot主配置文件 application.ym

Java中Redisson 的原理深度解析

《Java中Redisson的原理深度解析》Redisson是一个高性能的Redis客户端,它通过将Redis数据结构映射为Java对象和分布式对象,实现了在Java应用中方便地使用Redis,本文... 目录前言一、核心设计理念二、核心架构与通信层1. 基于 Netty 的异步非阻塞通信2. 编解码器三、

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java 虚拟线程的创建与使用深度解析

《Java虚拟线程的创建与使用深度解析》虚拟线程是Java19中以预览特性形式引入,Java21起正式发布的轻量级线程,本文给大家介绍Java虚拟线程的创建与使用,感兴趣的朋友一起看看吧... 目录一、虚拟线程简介1.1 什么是虚拟线程?1.2 为什么需要虚拟线程?二、虚拟线程与平台线程对比代码对比示例:三

一文解析C#中的StringSplitOptions枚举

《一文解析C#中的StringSplitOptions枚举》StringSplitOptions是C#中的一个枚举类型,用于控制string.Split()方法分割字符串时的行为,核心作用是处理分割后... 目录C#的StringSplitOptions枚举1.StringSplitOptions枚举的常用

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

MyBatis延迟加载与多级缓存全解析

《MyBatis延迟加载与多级缓存全解析》文章介绍MyBatis的延迟加载与多级缓存机制,延迟加载按需加载关联数据提升性能,一级缓存会话级默认开启,二级缓存工厂级支持跨会话共享,增删改操作会清空对应缓... 目录MyBATis延迟加载策略一对多示例一对多示例MyBatis框架的缓存一级缓存二级缓存MyBat