电路原理-反激式电路

2023-10-24 01:20
文章标签 原理 电路 反激式

本文主要是介绍电路原理-反激式电路,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1、1反激式电路是小功率电源(150W以下)当中,最常用的电路,它的工作原理如下。
1、2如图1,变压器T1,标记红点的端,12、3、A为同名端,10、1、B为异名端。
        当MOS管导通的时候,初级绕组N1、次级绕组N、VCC绕组N3感应电动势的方向为10、1、B为+,12、3、A为-。各绕组的电流方向如箭头所示。                                                                            初级绕组N1。整流后的高压经过变乐器初级饶组,在初级浇组N1上产生10+、12-的感应电动势。电流流向为10进来,再到12,再到MOS管。                                                                                   次级绕组N2:由于同名端的关系,在次级绕组N2上产生B+、A-的感应电动势,它的电流方向如图1,蓝色箭头所示,由B流向A,此时次级肖特基
        D3反向偏置,处于截止状态,不能导通..这个时候的负载如红色箭头所示,由C4、C5电容给负载进行供电。
        VCC绕组N3:由于同名端的关系,在VCC绕组N3上产生1+、3-的感应电动势,看箭头电流方向,此时该绕组不能形成电流通路。IC的供电是由
图9,C2启动电容来提供的。

 

 

1、3如图2,当MOS管关断的时候,各绕组的感应电动势反向,初级绕组N1、次级绕组N2、VCC绕组3感应电动势的方向为12、3、A为+,10、1、B为-各绕组的电流方向如箭头所示。
         初级绕组N1:由于此时MOS关断,初级绕组N1上产生一个12+、10-的反向感应电动势,12脚也就是MOS管的D极,它们是连在一起的,MOS管的D极会产生一个反向的尖锋电压,通过初级RCD缓冲吸收回路进行释放。

        次级绕组N2;由于同名端的关系,在次级绕组N2上产生A+、B-的反向感应电动势,它的电流方向如图2,蓝色箭头,由A流向B,此时次级肖特基D3正向偏置,处于导通状态。此时的负载是由次级铙组N2进行供电。大家看红色箭头次级饶组N2同时会给C4、C5电容充电。

        VCC绕组N3:由于同名端的关系,在VCC绕组N3上产生3+、1-的反向感应电动势,D2二极管正向导通.IC的供电是由图10,由VCC绕组N3供电,同时VCC绕组N3对启动电容进行充。

 反激式电路原理也可以简单的理解,初级导通,绪存能量,次级关断。初级关断,次级导通,释放能

2、原理图分析

2、1反激式电路图原边反馈电路和副边反馈电路。

2、2如图3,是常用的副边反馈电路,我们就来对这个电路坐具体分析

 2、3  交流输入到整流桥

        如图4,因为AC交流电的波形是正弦波,半个周期内,L线电压会高于N线电压,另外半个周期,L线电压会低于N线电压。

        如图5,图6,红色箭头所示,分别为AC交流电的正半周、负半周电流流向。

F1              当电路不正常的时候,有大电流产生时,先会烧坏保险丝,从而保护整个后级电路.
NTC1         避免开机瞬间,防浪涌电流冲击,保护后级电路。
MOV1        抑制浪涌电压,另外配合前端的保险丝一起,起到防雷击的作用,保护后级电路。
L1、L2       滤波,滤同时加在L、N线的共模干扰信号,EMI测试时,过传导干扰测试用。
CX1,           滤波,滤L、N线之间的差模于扰信号,EMII测试时,过传导干扰测试用。

R1、R2      当输入插头拔掉时,释放CX1电容储存的电能。
BD1            整流,把输入交流电压变成直流电压。

2、4                初级主回路 MOS管导通关断

如图7,图8,为M0S管导通关断时的电流流向。

 C1         整流后,储能,滤波。
Q1          过IC6脚Pw波驱动,实现开关作用。
R22        限流电阻,MOs管导通的时候,通过检测R22上的电压,进入到IC4脚,跟IC内部的阀值电压进行比较,来控制过流点。
D1          给OS管关断时产生的尖峰电压提供一个释放通路。

 R5、R6、R7        吸收MOs管关断时产生的尖峰电压,用来消耗能量-
c3          因为该电容容值比较小,容抗比较大,能用来抑制MOS管关断时产生的瞬态高压。经常还会串一个电阻R8,

 

这篇关于电路原理-反激式电路的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/271734

相关文章

深入探索协同过滤:从原理到推荐模块案例

文章目录 前言一、协同过滤1. 基于用户的协同过滤(UserCF)2. 基于物品的协同过滤(ItemCF)3. 相似度计算方法 二、相似度计算方法1. 欧氏距离2. 皮尔逊相关系数3. 杰卡德相似系数4. 余弦相似度 三、推荐模块案例1.基于文章的协同过滤推荐功能2.基于用户的协同过滤推荐功能 前言     在信息过载的时代,推荐系统成为连接用户与内容的桥梁。本文聚焦于

hdu4407(容斥原理)

题意:给一串数字1,2,......n,两个操作:1、修改第k个数字,2、查询区间[l,r]中与n互质的数之和。 解题思路:咱一看,像线段树,但是如果用线段树做,那么每个区间一定要记录所有的素因子,这样会超内存。然后我就做不来了。后来看了题解,原来是用容斥原理来做的。还记得这道题目吗?求区间[1,r]中与p互质的数的个数,如果不会的话就先去做那题吧。现在这题是求区间[l,r]中与n互质的数的和

hdu4407容斥原理

题意: 有一个元素为 1~n 的数列{An},有2种操作(1000次): 1、求某段区间 [a,b] 中与 p 互质的数的和。 2、将数列中某个位置元素的值改变。 import java.io.BufferedInputStream;import java.io.BufferedReader;import java.io.IOException;import java.io.Inpu

hdu4059容斥原理

求1-n中与n互质的数的4次方之和 import java.io.BufferedInputStream;import java.io.BufferedReader;import java.io.IOException;import java.io.InputStream;import java.io.InputStreamReader;import java.io.PrintWrit

寻迹模块TCRT5000的应用原理和功能实现(基于STM32)

目录 概述 1 认识TCRT5000 1.1 模块介绍 1.2 电气特性 2 系统应用 2.1 系统架构 2.2 STM32Cube创建工程 3 功能实现 3.1 代码实现 3.2 源代码文件 4 功能测试 4.1 检测黑线状态 4.2 未检测黑线状态 概述 本文主要介绍TCRT5000模块的使用原理,包括该模块的硬件实现方式,电路实现原理,还使用STM32类

TL-Tomcat中长连接的底层源码原理实现

长连接:浏览器告诉tomcat不要将请求关掉。  如果不是长连接,tomcat响应后会告诉浏览器把这个连接关掉。    tomcat中有一个缓冲区  如果发送大批量数据后 又不处理  那么会堆积缓冲区 后面的请求会越来越慢。

HNU-2023电路与电子学-实验3

写在前面: 一、实验目的 1.了解简易模型机的内部结构和工作原理。 2.分析模型机的功能,设计 8 重 3-1 多路复用器。 3.分析模型机的功能,设计 8 重 2-1 多路复用器。 4.分析模型机的工作原理,设计模型机控制信号产生逻辑。 二、实验内容 1.用 VERILOG 语言设计模型机的 8 重 3-1 多路复用器; 2.用 VERILOG 语言设计模型机的 8 重 2-1 多

PHP原理之内存管理中难懂的几个点

PHP的内存管理, 分为俩大部分, 第一部分是PHP自身的内存管理, 这部分主要的内容就是引用计数, 写时复制, 等等面向应用的层面的管理. 而第二部分就是今天我要介绍的, zend_alloc中描写的关于PHP自身的内存管理, 包括它是如何管理可用内存, 如何分配内存等. 另外, 为什么要写这个呢, 因为之前并没有任何资料来介绍PHP内存管理中使用的策略, 数据结构, 或者算法. 而在我们

Smarty模板执行原理

为了实现程序的业务逻辑和内容表现页面的分离从而提高开发速度,php 引入了模板引擎的概念,php 模板引擎里面最流行的可以说是smarty了,smarty因其功能强大而且速度快而被广大php web开发者所认可。本文将记录一下smarty模板引擎的工作执行原理,算是加深一下理解。 其实所有的模板引擎的工作原理是差不多的,无非就是在php程序里面用正则匹配将模板里面的标签替换为php代码从而将两者

Restful API 原理以及实现

先说说API 再说啥是RESRFUL API之前,咱先说说啥是API吧。API大家应该都知道吧,简称接口嘛。随着现在移动互联网的火爆,手机软件,也就是APP几乎快爆棚了。几乎任何一个网站或者应用都会出一款iOS或者Android APP,相比网页版的体验,APP确实各方面性能要好很多。 那么现在问题来了。比如QQ空间网站,如果我想获取一个用户发的说说列表。 QQ空间网站里面需要这个功能。