【人工智能项目】工业钢板焊缝图像去噪处理

2023-10-23 22:59

本文主要是介绍【人工智能项目】工业钢板焊缝图像去噪处理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

【人工智能项目】工业钢板焊缝图像去噪处理

在这里插入图片描述

最近,论文盲审了~ 工作等谈薪了~。没大有什么事情了,就准备把研究生阶段做过的一些东西分享出来,希望给大家有所帮助。

本次分享的是有关一些高分辨率图像背景较为复杂的图像一些去噪处理方法,我当时处理的图像的分辨率大小是6000x1500分辨率,主要是当时工业背景较为复杂,待检测的缺陷对象与背景的差异不明显,因此需要对背景去噪,缺陷点增强的处理。

在这里插入图片描述

读取图片

首先给出本次处理的原始图片。
在这里插入图片描述
从原图中可以看出缺陷点与背景差异极其不明显,若想送入神经网络中必需要先对其进行预处理工作。

import cv2 
img = cv2.imread("src.tif",1)
#第二个参数是通道数和位深的参数,
#IMREAD_UNCHANGED = -1#不进行转化,比如保存为了16位的图片,读取出来仍然为16位。
#IMREAD_GRAYSCALE = 0#进行转化为灰度图,比如保存为了16位的图片,读取出来为8位,类型为CV_8UC1。
#IMREAD_COLOR = 1#进行转化为RGB三通道图像,图像深度转为8位
#IMREAD_ANYDEPTH = 2#保持图像深度不变,进行转化为灰度图。
#IMREAD_ANYCOLOR = 4#若图像通道数小于等于3,则保持原通道数不变;若通道数大于3则只取取前三个通道。图像深度转为8位
print (img.shape)
print (img.dtype) 
print (img.min())
print (img.max())
#创建窗口并显示图像
# cv2.namedWindow("Image")
# cv2.imshow("Image",img)
# cv2.waitKey(0)
# #释放窗口
# cv2.destroyAllWindows() 

(2072, 6822, 3)
uint8
80
252

图像模糊预处理

通过将图像与低通滤波器内核进行卷积来实现图像模糊。这对于消除噪音很有用。它实际上从图像中消除了高频部分(例如噪声,边缘)。因此,在此操作中边缘有些模糊。(有一些模糊技术也可以不模糊边缘)。OpenCV主要提供四种类型的模糊技术。

import cv2 as cv
import numpy as np
from matplotlib import pyplot as pltplt.imshow(img2),plt.title('Original')
plt.xticks([]), plt.yticks([])
plt.show()

在这里插入图片描述

# 中位模糊
blur = cv.blur(img2,(5,5))
plt.imshow(blur),plt.title('Blurred')
plt.xticks([]), plt.yticks([])
plt.show()
cv2.imwrite("blur.jpg",blur)

在这里插入图片描述

# 高斯滤波
blur = cv.GaussianBlur(img,(3,3),0)
plt.imshow(blur),plt.title('GaussianBlur')
plt.xticks([]), plt.yticks([])
plt.show()
cv2.imwrite("GaussianBlur.jpg",blur)

在这里插入图片描述

# 双边滤波
blur = cv.bilateralFilter(img,9,75,75)
plt.imshow(blur),plt.title('bilateralFilter')
plt.xticks([]), plt.yticks([])
plt.show()
cv2.imwrite("bilateralFilter.jpg",blur)

在这里插入图片描述

对比度增强

在进行对比度增强之前,先看一下图像的灰度直方图的分布情况。

import cv2 as cv
import numpy as np
import matplotlib.pyplot as pltdef calcGrayHist(I):# 计算灰度直方图h, w = I.shape[:2]grayHist = np.zeros([256], np.uint64)for i in range(h):for j in range(w):grayHist[I[i][j]] += 1return grayHistimg = cv.imread("src.tif")
grayHist = calcGrayHist(img)
x = np.arange(256)
# 绘制灰度直方图
plt.plot(x, grayHist, 'r', linewidth=2, c='black')
plt.xlabel("gray Label")
plt.ylabel("number of pixels")
plt.show()
# cv.imshow("img", img)
# cv.waitKey()

在这里插入图片描述

# 线性变换
# 对图像进行 线性变换
def linear_transform(img, a, b):''':param img: [h, w, 3] 彩色图像:param a:  float  这里需要是浮点数,把图片uint8类型的数据强制转成float64:param b:  float:return: out = a * img + b'''out = a * img + bout[out > 255] = 255out = np.around(out)out = out.astype(np.uint8)return out# a = 2, b=10
img = cv2.imread("src.tif") # 这里需要指定一个 img_path
img = linear_transform(img, 1, 10)
img =  cv2.cvtColor(img,cv2.COLOR_BGR2RGB)
plt.imshow(img)cv2.imwrite("linear.jpg",img)

在这里插入图片描述

# 直方图正规化img = cv.imread("src.tif", 0)
# 计算原图中出现的最小灰度级和最大灰度级
# 使用函数计算
Imin, Imax = cv.minMaxLoc(img)[:2]
# 使用numpy计算
# Imax = np.max(img)
# Imin = np.min(img)
Omin, Omax = 0, 255
# 计算a和b的值
a = float(Omax - Omin) / (Imax - Imin)
b = Omin - a * Imin
out = a * img + b
out = out.astype(np.uint8)
# cv.imshow("img", img)
# plt.imshow("out",out)
# cv.imshow("out", out)
# cv.waitKey()
cv2.imwrite("normalize.jpg",out)
# 伽马变换
img = cv.imread("src.tif", 0)
# 图像归一化
fi = img / 255.0
# 伽马变换
gamma = 0.4
out = np.power(fi, gamma)
cv2.imwrite("gamma.jpg",out)
# 直方图均衡化
# 对图像进行 均衡化
def equalize_transfrom(gray_img):return cv.equalizeHist(gray_img)img = cv2.imread("GaussianBlur.jpg") # 这里需要指定一个 img_path
b = img[:, :, 0]
g = img[:, :, 1]
r = img[:, :, 2]
b_out = equalize_transfrom(b)
g_out = equalize_transfrom(g)
r_out = equalize_transfrom(r)
equa_out = np.stack((b_out, g_out, r_out), axis=-1)
img =  cv2.cvtColor(equa_out,cv2.COLOR_BGR2RGB)
plt.imshow(img)# 保存图片
cv2.imwrite("equalize.jpg",img)

在这里插入图片描述

# 高斯滤波
blur = cv.GaussianBlur(img,(3,3),0)
plt.imshow(blur),plt.title('GaussianBlur')
plt.xticks([]), plt.yticks([])
plt.show()
cv2.imwrite("GaussianBlur.jpg",blur)

在这里插入图片描述

# 全局直方图均衡化
import mathdef equalHist(img):# 灰度图像矩阵的高、宽h, w,_ = img.shape# 第一步:计算灰度直方图grayHist = calcGrayHist(img)# 第二步:计算累加灰度直方图zeroCumuMoment = np.zeros([256], np.uint32)for p in range(256):if p == 0:zeroCumuMoment[p] = grayHist[0]else:zeroCumuMoment[p] = zeroCumuMoment[p - 1] + grayHist[p]# 第三步:根据累加灰度直方图得到输入灰度级和输出灰度级之间的映射关系outPut_q = np.zeros([256], np.uint8)cofficient = 256.0 / (h * w)for p in range(256):q = cofficient * float(zeroCumuMoment[p]) - 1if q >= 0:outPut_q[p] = math.floor(q)else:outPut_q[p] = 0# 第四步:得到直方图均衡化后的图像equalHistImage = np.zeros(img.shape, np.uint8)for i in range(h):for j in range(w):equalHistImage[i][j] = outPut_q[img[i][j]]return equalHistImageimg = cv.imread("src.tif", 0)
# 使用自己写的函数实现
equa = equalHist(blur)
cv2.imwrite("equalize2.jpg",equa)
# 自动色彩均衡
img = cv2.imread("equalize.jpg",1) # 这里需要指定一个 img_path
b, g, r = cv2.split(img)
B = np.mean(b)
G = np.mean(g)
R = np.mean(r)
K = (R + G + B) / 3
Kb = K / B
Kg = K / G
Kr = K / R
cv2.addWeighted(b, Kb, 0, 0, 0, b)
cv2.addWeighted(g, Kg, 0, 0, 0, g)
cv2.addWeighted(r, Kr, 0, 0, 0, r)
merged = cv2.merge([b,g,r])
plt.imshow(merged)
cv.imwrite('merged.jpg',merged)

在这里插入图片描述

# 自适应直方图均衡
import numpy as np
import cv2 as cv
img = cv2.imread("merged.jpg",0) # 这里需要指定一个 img_path
# create a CLAHE object (Arguments are optional).
clahe = cv.createCLAHE(clipLimit=2.0, tileGridSize=(8,8))
cl1 = clahe.apply(img)
plt.imshow(cl1)
cv.imwrite('clahe_2.jpg',cl1)

在这里插入图片描述

这篇关于【人工智能项目】工业钢板焊缝图像去噪处理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/271007

相关文章

Python FastAPI+Celery+RabbitMQ实现分布式图片水印处理系统

《PythonFastAPI+Celery+RabbitMQ实现分布式图片水印处理系统》这篇文章主要为大家详细介绍了PythonFastAPI如何结合Celery以及RabbitMQ实现简单的分布式... 实现思路FastAPI 服务器Celery 任务队列RabbitMQ 作为消息代理定时任务处理完整

C#使用SQLite进行大数据量高效处理的代码示例

《C#使用SQLite进行大数据量高效处理的代码示例》在软件开发中,高效处理大数据量是一个常见且具有挑战性的任务,SQLite因其零配置、嵌入式、跨平台的特性,成为许多开发者的首选数据库,本文将深入探... 目录前言准备工作数据实体核心技术批量插入:从乌龟到猎豹的蜕变分页查询:加载百万数据异步处理:拒绝界面

Springboot处理跨域的实现方式(附Demo)

《Springboot处理跨域的实现方式(附Demo)》:本文主要介绍Springboot处理跨域的实现方式(附Demo),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不... 目录Springboot处理跨域的方式1. 基本知识2. @CrossOrigin3. 全局跨域设置4.

一文教你如何将maven项目转成web项目

《一文教你如何将maven项目转成web项目》在软件开发过程中,有时我们需要将一个普通的Maven项目转换为Web项目,以便能够部署到Web容器中运行,本文将详细介绍如何通过简单的步骤完成这一转换过程... 目录准备工作步骤一:修改​​pom.XML​​1.1 添加​​packaging​​标签1.2 添加

tomcat多实例部署的项目实践

《tomcat多实例部署的项目实践》Tomcat多实例是指在一台设备上运行多个Tomcat服务,这些Tomcat相互独立,本文主要介绍了tomcat多实例部署的项目实践,具有一定的参考价值,感兴趣的可... 目录1.创建项目目录,测试文China编程件2js.创建实例的安装目录3.准备实例的配置文件4.编辑实例的

python+opencv处理颜色之将目标颜色转换实例代码

《python+opencv处理颜色之将目标颜色转换实例代码》OpenCV是一个的跨平台计算机视觉库,可以运行在Linux、Windows和MacOS操作系统上,:本文主要介绍python+ope... 目录下面是代码+ 效果 + 解释转HSV: 关于颜色总是要转HSV的掩膜再标注总结 目标:将红色的部分滤

Python实现自动化接收与处理手机验证码

《Python实现自动化接收与处理手机验证码》在移动互联网时代,短信验证码已成为身份验证、账号注册等环节的重要安全手段,本文将介绍如何利用Python实现验证码的自动接收,识别与转发,需要的可以参考下... 目录引言一、准备工作1.1 硬件与软件需求1.2 环境配置二、核心功能实现2.1 短信监听与获取2.

Python使用date模块进行日期处理的终极指南

《Python使用date模块进行日期处理的终极指南》在处理与时间相关的数据时,Python的date模块是开发者最趁手的工具之一,本文将用通俗的语言,结合真实案例,带您掌握date模块的六大核心功能... 目录引言一、date模块的核心功能1.1 日期表示1.2 日期计算1.3 日期比较二、六大常用方法详

springboot集成Deepseek4j的项目实践

《springboot集成Deepseek4j的项目实践》本文主要介绍了springboot集成Deepseek4j的项目实践,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录Deepseek4j快速开始Maven 依js赖基础配置基础使用示例1. 流式返回示例2. 进阶

利用Go语言开发文件操作工具轻松处理所有文件

《利用Go语言开发文件操作工具轻松处理所有文件》在后端开发中,文件操作是一个非常常见但又容易出错的场景,本文小编要向大家介绍一个强大的Go语言文件操作工具库,它能帮你轻松处理各种文件操作场景... 目录为什么需要这个工具?核心功能详解1. 文件/目录存javascript在性检查2. 批量创建目录3. 文件