python 四分卫数_NFL 2020预览与Python四分卫

2023-10-22 15:40

本文主要是介绍python 四分卫数_NFL 2020预览与Python四分卫,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

python 四分卫数

NFL 2020 season is coming soon. For preview this season, I’m going to visualize some quarterbacks data using 2019 dataset.

NFL 2020赛季即将到来。 为了预览本季,我将使用2019年数据集可视化一些四分卫数据。

1.概述 (1. Overview)

In this article, I’m going to use this dataset as below. Thanks to Mr. Ron Yurko.

在本文中,我将使用以下数据集。 感谢Ron Yurko先生。

There is play-by-play dataset of pre-season, regular season and play-off. I’m going to use only regular season and visualize some quarterback stats. What kind of type? Pocket passer or Mobile QB? How is their performance? How is it when they are in the specific situation such as quarter, down and score behind?

有季前,常规赛和附加赛的逐项比赛数据集。 我将只使用常规赛季并可视化一些四分卫的数据。 什么样的类型? 口袋路人还是手机QB? 他们的表现如何? 当他们处在特定情况下(如四分之一,下降,得分落后)时,情况如何?

OK, Let’s get down to implementation.

好的,让我们开始实施。

2.预处理 (2. Preprocessing)

import pandas as pd
pd.set_option(“max_columns”, 400)
pbp = pd.read_csv(“play_by_play_data/regular_season/reg_pbp_2019.csv”)
roster = pd.read_csv(“roster_data/regular_season/reg_roster_2019.csv”)

Filter with quarterbacks.

用四分卫过滤。

qb = roster[roster.position == “QB”].sort_values(“full_player_name”).reset_index(drop=True)

See the dataframe info of pbp dataset.

查看pbp数据集的数据框信息。

pbp.info()

<class ‘pandas.core.frame.DataFrame’> RangeIndex: 45546 entries, 0 to 45545 Columns: 256 entries, play_id to defensive_extra_point_conv dtypes: float64(130), int64(21), object(105) memory usage: 89.0+ MB

<class'pandas.core.frame.DataFrame'> RangeIndex:45546个条目,0到45545列:256个条目,play_id到defensive_extra_point_conv dtypes:float64(130),int64(21),object(105)内存使用量:89.0+ MB

It’s too large to visualize quarterback data, so narrow down.

它太大而无法可视化四分卫数据,因此请缩小范围。

pbp_custom = pbp[[
“game_id”
,”game_half”
,”qtr”
,”time”
,”posteam”
,”yardline_100"
,”down”
,”ydstogo”
,”two_point_attempt”
,”yards_gained”
,”air_yards”
,”yards_after_catch”
,”play_type”
,”first_down_pass”
,”first_down_rush”
,”qb_hit”
,”rush_attempt”
,”pass_attempt”
,”complete_pass”
,”incomplete_pass”
,”sack”
,”touchdown”
,”interception”
,”pass_touchdown”
,”rush_touchdown”
,”pass_length”
,”pass_location”
,”passer_player_id”
,”passer_player_name”
,”rusher_player_id”
,”rusher_player_name”
]].sort_values(
[
“game_id”
,”game_half”
,”qtr”
,”time”
]
,ascending=[
True
,True
,True
,False
]
)

Aggregate this data as passing stats.

将此数据汇总为通过状态。

#Don’t count sack yards for player’s stats
pbp_custom.loc[pbp_custom.sack == 1, “yards_gained”] = 0#Aggregate by player, quarter and down
qb_pass_stats = pbp_custom[
(pbp_custom.passer_player_id.isin(qb.gsis_id)) #only QB
& (pbp_custom.two_point_attempt == 0) #exclude two-point conversion
].groupby(
[
“passer_player_id”
,”qtr”
,”down”
]
,as_index=False
).agg(
{
“complete_pass”: “sum”
,”yards_gained”: “sum”
,”first_down_pass”: “sum”
,”pass_touchdown”: “sum”
,”incomplete_pass”: “sum”
,”sack”: “sum”
,”interception”: “sum”
}
)#Create new columns
qb_pass_stats[“pass_attempt”] = qb_pass_stats[“complete_pass”] + qb_pass_stats[“incomplete_pass”] + qb_pass_stats[“interception”]
qb_pass_stats[“complete_rate”] = round(
qb_pass_stats[“complete_pass”] / qb_pass_stats[“pass_attempt”]
, 3
) * 100#Aggregate by player
qb_pass_stats_season = qb_pass_stats.groupby(
[“passer_player_id”]
,as_index=False
).agg(
{
“pass_attempt”: “sum”
,“complete_pass”: “sum”
,”yards_gained”: “sum”
,”first_down_pass”: “sum”
,”pass_touchdown”: “sum”
,”incomplete_pass”: “sum”
,”sack”: “sum”
,”interception”: “sum”
}
)#Create new columns
qb_pass_stats_season[“complete_rate”] = round(
qb_pass_stats_season[“complete_pass”] / qb_pass_stats_season[“pass_attempt”]
, 3
) * 100#only who exceed 2000 yards
qb_pass_stats_season = qb_pass_stats_season[qb_pass_stats_season.yards_gained >= 2000]
Image for post
qb_pass_stats[[“passer_player_id”, “qtr”, “down”, “pass_attempt”, “complete_pass”, “yards_gained”]].head()
qb_pass_stats [[“ passer_player_id”,“ qtr”,“ down”,“ pass_attempt”,“ complete_pass”,“ yards_gained”]]。head()
Image for post
qb_pass_stats_season[[“passer_player_id”,”pass_attempt”,”complete_pass”,”yards_gained”]].sort_values([“yards_gained”], ascending=False).head()
qb_pass_stats_season [[“ passer_player_id”,“ pass_attempt”,“ complete_pass”,“ yards_gained”]]。sort_values([“ yards_gained”],ascending = False).head()

Top is Jameis Winston with 5109 yards.

最高的是5109码的Jameis Winston。

Do the same with rushing. “yards_gained” doesn’t include lateral rush, please note that.

匆匆做同样的事情。 “ yards_gained”不包括横向奔波,请注意。

#Aggregate by player, quarter and down
qb_rush_stats = pbp_custom[
pbp_custom.rusher_player_id.isin(
qb_pass_stats_season.passer_player_id
)].groupby(
[
“rusher_player_id”
,”qtr”
,”down”
]
,as_index=False
).agg(
{
“play_type”: “count”
,”yards_gained”: “sum”
,”first_down_rush”: “sum”
,”rush_touchdown”: “sum”
}
)#Aggregate by player
qb_rush_stats_season = qb_rush_stats.groupby(
[
“rusher_player_id”
]
,as_index=False
).agg(
{
“rush_attempt”: “sum”
,”yards_gained”: “sum”
,”first_down_rush”: “sum”
,”rush_touchdown”: “sum”
}
)
Image for post
qb_rush_stats[[“rusher_player_id”, “qtr”, “down”, “yards_gained”]].head()
qb_rush_stats [[“ rusher_player_id”,“ qtr”,“ down”,“ yards_gained”]]。head()
Image for post
qb_rush_stats_season[[“rusher_player_id”, “yards_gained”]].sort_values([“yards_gained”], ascending=False).head()
qb_rush_stats_season [[“ rusher_player_id”,“ yards_gained”]]。sort_values([“ yards_gained”],ascending = False).head()

Top is of cource Lamar Jackson with 1206 yards.

顶部是库拉(Lamar Jackson)的1206码码。

Merge passing dataset and rushing dataset, also merge player dataset.

合并通过数据集和紧急数据集,也合并玩家数据集。

#Merge pass stats and rush stats datasets
qb_stats_season = pd.merge(
qb_pass_stats_season
,qb_rush_stats_season
,left_on=”passer_player_id”
,right_on=”rusher_player_id”
,how=”inner”
,suffixes=[“_passing”, “_rushing”]
).sort_values(“yards_gained_passing”, ascending=False)#Merge stats and players datasets
qb_stats_season = pd.merge(
qb_stats_season
,qb
,left_on="passer_player_id"
,right_on="gsis_id"
,how="inner"
)qb_stats_season = qb_stats_season.rename(columns={"passer_player_id": "player_id"})#Create new columns
qb_stats_season["yards_gained"] = qb_stats_season["yards_gained_passing"] + qb_stats_season["yards_gained_rushing"]qb_stats_season["touchdown"] = qb_stats_season["pass_touchdown"] + qb_stats_season["rush_touchdown"]
Image for post
qb_stats_season[[“player_id”, “full_player_name”, “team”, “yards_gained”, “yards_gained_passing”, “yards_gained_rushing”]].head()
qb_stats_season [[[“ player_id”,“ full_player_name”,“ team”,“ yards_gained”,“ yards_gained_pa​​ssing”,“ yards_gained_rushing”]]。head()

3.可视化 (3. Visualization)

Let’s visualize quarterback playing style. Describe passing yards and rushing yards using scatter plot.

让我们可视化四分卫的比赛风格。 使用散点图描述通过码和冲码。

%matplotlib inline
import matplotlib.pyplot as pltwith plt.rc_context(
{
"axes.edgecolor":"white"
,"xtick.color":"white"
, "ytick.color":"white"
, "figure.facecolor":"white"
}
):
fig = plt.figure(figsize=(15, 12), facecolor="black")
ax = fig.add_subplot(111, facecolor="black")#Plot scatter
s = ax.scatter(
qb_stats_season["yards_gained_passing"]
,qb_stats_season["yards_gained_rushing"]
,s=200
,alpha=0.5
,c=(qb_stats_season["sack"] + qb_stats_season["interception"])
,cmap="bwr"
,marker="D"
)
ax.set_xlabel("Pass Yds", color="white")
ax.set_ylabel("Rush Yds", color="white")
ax.set_xlim(2400, 5200)
ax.set_ylim(-100, 1300)#Plot player name as text
for _, qb_data in qb_stats_season.iterrows():
ax.text(
qb_data.yards_gained_passing
,qb_data.yards_gained_rushing
,qb_data.full_player_name
,verticalalignment="center"
,horizontalalignment="center"
,fontsize=13
,color="white"
)#Colorbar settings
cb = plt.colorbar(s)
cb.set_label("Sack + Interception", color="white", size=20)
cb.outline.set_edgecolor("white")
plt.setp(plt.getp(cb.ax.axes, 'yticklabels'), color="white")plt.title("QB Type", color="white")
Image for post

X-axis is passing yards and Y-axis is rushing yards. It’s strange to be defined different scale between x-axis and y-axis, but this is for visibility.

X轴是经过码,Y轴是冲码。 在x轴和y轴之间定义不同的比例很奇怪,但这是为了提高可见性。

I also colored each marker, which is total amount of sack and interception. Red, such as Winston and Murray, is more sacked and intercepted while blue, such as Mahomes and Brees, is less sacked and intercepted.

我还为每个标记着色,这是麻袋和拦截物的总量。 红色(例如Winston和Murray)被解雇和被拦截,而蓝色(例如Mahomes和Brees)被解雇和被拦截。

We can find out:

我们可以找到:

  • Winston has the highest passing yards but was more sacked and intercepted.

    温斯顿传球码最高,但被解雇和拦截的次数更多。
  • Jackson is absolutely mobile QB and was also less sacked and intercepted.

    杰克逊绝对是行动QB,也没有那么被解雇和被拦截。
  • Mahomes and Brees was much less sacked and intercepted but not many passing yards.

    Mahomes和Brees被解雇和拦截的次数要少得多,但传球码并不多。
  • Murray, Watson and Wilson is good at both?

    默里,沃森和威尔逊都擅长吗?

Next, how many yards they gained while they were sacked or intercepted?

接下来,他们被解雇或拦截时获得了多少码?

Calculate yards gained per sacked and intercepted and visualize it using histogram.

计算每个被解雇和拦截的码数,并使用直方图将其可视化。

#Create new column
qb_stats_season[“gained_per_sack_and_interception”] = round(
qb_stats_season[“yards_gained”] / (qb_stats_season[“sack”] + qb_stats_season[“interception”])
,1
)qb_stats_season = qb_stats_season.sort_values(“gained_per_sack_and_interception”, ascending=True).reset_index(drop=True)with plt.rc_context(
{
"axes.edgecolor":"white"
,"xtick.color":"white"
, "ytick.color":"white"
, "figure.facecolor":"white"
}
):
fig = plt.figure(figsize=(10, 10), facecolor=”black”)
ax = fig.add_subplot(111, facecolor=”black”)#Plot horizontal histogram
ax.barh(
qb_stats_season.full_player_name
,qb_stats_season.gained_per_sack_and_interception
,color=”grey”
)#Plot stats as text on histogram
for index, qb_data in qb_stats_season.iterrows():
ax.text(
qb_data.gained_per_sack_and_interception
,index
,str(qb_data.yards_gained) + “ / “ + str(int(qb_data.sack) + int(qb_data.interception))
,color=”white”
,ha=”center”
,va=”right”
)
plt.title(“Never Fail QB Ranks”, color=”white”)
ax.set_xlabel(“Gained / (Sack + Interception)”, color=”white”)
Image for post

How stable Mahomes is. Brees, Prescott and Jackson are also outstanding. Meanwhile, Winston and Murray has many yards but we can say they are not stable.

Mahomes有多稳定。 布雷斯,普雷斯科特和杰克逊也很出色。 同时,温斯顿(Winston)和穆雷(Murray)有很多码,但是我们可以说它们不稳定。

By the way, how about each quarter? Aggregate data again.

顺便问一下,每个季度怎么样? 再次汇总数据。

qb_pass_stats_qtr = qb_pass_stats.groupby(
[
“passer_player_id”
,”qtr”
]
,as_index=False
).agg(
{
“complete_pass”: “sum”
,”yards_gained”: “sum”
,”first_down_pass”: “sum”
,”pass_touchdown”: “sum”
,”incomplete_pass”: “sum”
,”sack”: “sum”
,”interception”: “sum”
}
)
qb_pass_stats_qtr[“pass_attempt”] = qb_pass_stats_qtr[“complete_pass”] + qb_pass_stats_qtr[“incomplete_pass”] + qb_pass_stats_qtr[“interception”]qb_pass_stats_qtr[“complete_rate”] = round(qb_pass_stats_qtr[“complete_pass”] / qb_pass_stats_qtr[“pass_attempt”], 3) * 100qb_rush_stats_qtr = qb_rush_stats.groupby(
[
"rusher_player_id"
,"qtr"
]
,as_index=False
).agg(
{
"rush_attempt": "sum"
,"yards_gained": "sum"
,"first_down_rush": "sum"
,"rush_touchdown": "sum"
}
)qb_stats_qtr = pd.merge(
qb_pass_stats_qtr
,qb_rush_stats_qtr
,left_on=["passer_player_id","qtr"]
,right_on=["rusher_player_id","qtr"]
,how="inner"
,suffixes=["_passing", "_rushing"]
)qb_stats_qtr = pd.merge(
qb_stats_qtr
,qb
,left_on="passer_player_id"
,right_on="gsis_id"
,how="inner"
)qb_stats_qtr["yards_gained"] = qb_stats_qtr["yards_gained_passing"] + qb_stats_qtr["yards_gained_rushing"]qb_stats_qtr["touchdown"] = qb_stats_qtr["pass_touchdown"] + qb_stats_qtr["rush_touchdown"]qb_stats_qtr = qb_stats_qtr.rename(columns={"passer_player_id": "player_id"})
Image for post
qb_stats_qtr[[“player_id”, “full_player_name”, “team”, “qtr”, “yards_gained”, “yards_gained_passing”, “yards_gained_rushing”]].head()
qb_stats_qtr [[[“ player_id”,“ full_player_name”,“ team”,“ qtr”,“ yards_gained”,“ yards_gained_pa​​ssing”,“ yards_gained_rushing”]]。head()
qb_stats_4q = qb_stats_qtr[qb_stats_qtr.qtr == 4].sort_values(“yards_gained”, ascending=False)with plt.rc_context(
{
"axes.edgecolor":"white"
,"xtick.color":"white"
, "ytick.color":"white"
, "figure.facecolor":"white"
}
):
fig = plt.figure(figsize=(15, 5), facecolor=”black”)
ax = fig.add_subplot(111, facecolor=”black”)s = ax.scatter(
qb_stats_4q.yards_gained_passing
,qb_stats_4q.yards_gained_rushing
,s=200
,alpha=0.5
,c=(qb_stats_4q.sack + qb_stats_4q.interception)
,cmap=”bwr”
,marker=”D”
)ax.set_xlabel(“Pass Yds”, color=”white”)
ax.set_ylabel(“Rush Yds”, color=”white”)for _, qb_data in qb_stats_4q.iterrows():
ax.text(
qb_data.yards_gained_passing
,qb_data.yards_gained_rushing
,qb_data.full_player_name
,verticalalignment=”center”
,horizontalalignment=”center”
,fontsize=13
,color=”white”
)cb = plt.colorbar(s)
cb.set_label(“Sack + Interception”, color=”white”, size=20)
cb.outline.set_edgecolor(“white”)
plt.setp(plt.getp(cb.ax.axes, ‘yticklabels’), color=”white”)
plt.title(“QB Type in 4Q”, color=”white”)
Image for post

Prescott and Mahomes are in constrast. Compare the gained yards in each quarter. We can also say that most QBs are less sacked and intercepted because of 4Q. (Winston and Mayfield are gambler?)

普雷斯科特(Prescott)和马荷姆斯(Mahomes)持反对意见。 比较每个季度获得的码数。 我们也可以说,由于Q,大多数QB的解雇和拦截较少。 (温斯顿和梅菲尔德是赌徒?)

mahomes_stats_qtr = qb_stats_qtr[qb_stats_qtr.player_id == “00–0033873”]
prescott_stats_qtr = qb_stats_qtr[qb_stats_qtr.player_id == “00–0033077”]with plt.rc_context(
{
"axes.edgecolor":"white"
,"xtick.color":"white"
, "ytick.color":"white"
, "figure.facecolor":"white"
}
):
fig = plt.figure(figsize=(10, 5), facecolor=”black”)
ax_mahomes = fig.add_subplot(121, facecolor=”black”)
ax_prescott = fig.add_subplot(122, facecolor=”black”)#Draw pie chart of Mahomes
wedges, _, _ = ax_mahomes.pie(
mahomes_stats_qtr.yards_gained
,labels=[“1Q”,”2Q”,”3Q”,”4Q”]
,textprops={“color”: “white”}
,wedgeprops={“linewidth”: 3}
,startangle=90
,counterclock=False
,autopct=”%1.1f%%”
)
ax_mahomes.text(
0, 0
,qb_stats_season[“yards_gained”][qb_stats_season.player_id == “00–0033873”].values[0]
,color=”white”
,ha=”center”
,va=”center”
,fontsize=20
)
plt.setp(wedges, width=0.2)#Draw pie chart of Prescott
wedges, _, _ = ax_prescott.pie(
prescott_stats_qtr.yards_gained
,labels=[“1Q”,”2Q”,”3Q”,”4Q”]
,textprops={“color”: “white”}
,wedgeprops={“linewidth”: 3}
,startangle=90
,counterclock=False
,autopct=”%1.1f%%”ax_prescott.text(
0, 0
,qb_stats_season[“yards_gained”][qb_stats_season.player_id == “00–0033077”].values[0]
,color=”white”
,ha=”center”
,va=”center”
,fontsize=20
)
plt.setp(wedges, width=0.2)ax_mahomes.set_title(“Mahomes”, color=”white”)
ax_prescott.set_title(“Prescott”, color=”white”)
Image for post

Can we describe Mahomes is “pre-emptive” QB and Prescott is “rising” QB?

我们能否描述Mahomes是“先发制人”的QB而Prescott是“崛起”的QB?

In addition, how about when the team is in adversity (score behind)?

此外,团队何时处于逆境中(得分落后)?

Image for post
Image for post

Oh, Mahomes is also outstanding in adversity… Prescott is too. Stafford is 3rd while he is 8th in gross and Garoppolo is 7th while 16th in gross. We can say they are strong in adversity.

哦,Mahomes在逆境中也很出色... Prescott也是。 斯塔福德排名第3,而他排名第8,加洛波罗排名第7,而排名第16。 我们可以说他们在逆境中很强。

I can do as much as I want, but leave off around here. Will Mahomes be MVP again with outstanding stability? Prescott will lead Dallas to Superbowl? How will Winston achieve at Saints alongside Brees? Can Murray and Mayfield improve stability and become the best QB in NFL?

我可以做很多我想做的事,但是不要在这里闲逛。 Mahomes会再次以出色的稳定性成为MVP吗? 普雷斯科特会带领达拉斯进入超级碗吗? 温斯顿将如何与布雷斯一起在圣徒队取得成就? Murray和Mayfield能否提高稳定性并成为NFL中最好的QB?

Thank you for reading!!

谢谢您的阅读!!

翻译自: https://medium.com/the-sports-scientist/nfl-2020-preview-with-python-quarterback-24345b76b97a

python 四分卫数


http://www.taodudu.cc/news/show-8033477.html

相关文章:

  • 个人排位赛--a 物理题,水题 URAL - 1939
  • HDU - 1260 Tickets
  • 【英语词组】恋恋不忘Day 3-2
  • 4.4学习心得
  • uni-app项目 getLocation:fail the api need to be declared in the requiredPrivateInfos field in app.jso
  • JSON schema for the TypeScript compiler‘s configuration file Problems loading reference ‘https://jso
  • Java实现世代距离_反世代距离评价指标IGD
  • 技能学习:学习使用Node.js + Vue.js,开发前端全栈网站-14-2.购买域名服务器并解析域名到服务器
  • 自己拥有一台服务器可以做哪些很酷的事情1——建博客
  • 阿里云云效研发协同服务相关协议条款 | 云效
  • 阿里云首次年度盈利,国内云厂商何时迎来集体回报期?
  • Linux云服务器的租用以及利用云盘进行数据的传输(智云星)
  • 服务器全套基础知识:包含基本概念,作用,服务器选择,服务器管理等
  • 关于腾讯云、阿里云“安全”的话题
  • 移动站点开发有哪几种?响应式、独立移动端还是RESS怎么选择?
  • Unity读取资源方法(Resources.load方法)
  • Unity 场景资源level0 level 及sharedassets0 sharedasset1
  • Javascript中的60个经典技巧
  • unity资源加载和卸载(脚本加载卸载,资源序列化后的结构,bundle内的序列化结构)
  • Unity之减少发布包大小
  • Unity 报错之 接入YomboTGSDK后打包报错:mainTemplate.gradle needs to be updated(property ‘unityStreamingAssets‘)
  • Nginx 负载服务
  • hcia第二天作业 静态路由
  • php mysql 手册_(十二)php参考手册---MySQLi函数(php操作MySQL)(仅学习)
  • 医药问答系统(四)执行neo4j查询语句并拼接成自然语言
  • RESS:响应式设计 + 服务端组件
  • React + RESS =更多
  • U3D解包针对2019后.assets .assets.resS的一次解包记录
  • ArcGIS地图结合eCharts 实现迁徙图
  • 利用ECharts3来实现ECharts2实例中的模拟迁徙效果,即背景地图为百度地图。
  • 这篇关于python 四分卫数_NFL 2020预览与Python四分卫的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



    http://www.chinasem.cn/article/262356

    相关文章

    Python自动化提取多个Word文档的文本

    《Python自动化提取多个Word文档的文本》在日常工作和学习中,我们经常需要处理大量的Word文档,本文将深入探讨如何利用Python批量提取Word文档中的文本内容,帮助你解放生产力,感兴趣的小... 目录为什么需要批量提取Word文档文本批量提取Word文本的核心技术与工具安装 Spire.Doc

    Python中Request的安装以及简单的使用方法图文教程

    《Python中Request的安装以及简单的使用方法图文教程》python里的request库经常被用于进行网络爬虫,想要学习网络爬虫的同学必须得安装request这个第三方库,:本文主要介绍P... 目录1.Requests 安装cmd 窗口安装为pycharm安装在pycharm设置中为项目安装req

    Python容器转换与共有函数举例详解

    《Python容器转换与共有函数举例详解》Python容器是Python编程语言中非常基础且重要的概念,它们提供了数据的存储和组织方式,下面:本文主要介绍Python容器转换与共有函数的相关资料,... 目录python容器转换与共有函数详解一、容器类型概览二、容器类型转换1. 基本容器转换2. 高级转换示

    使用Python将PDF表格自动提取并写入Word文档表格

    《使用Python将PDF表格自动提取并写入Word文档表格》在实际办公与数据处理场景中,PDF文件里的表格往往无法直接复制到Word中,本文将介绍如何使用Python从PDF文件中提取表格数据,并将... 目录引言1. 加载 PDF 文件并准备 Word 文档2. 提取 PDF 表格并创建 Word 表格

    使用Python实现局域网远程监控电脑屏幕的方法

    《使用Python实现局域网远程监控电脑屏幕的方法》文章介绍了两种使用Python在局域网内实现远程监控电脑屏幕的方法,方法一使用mss和socket,方法二使用PyAutoGUI和Flask,每种方... 目录方法一:使用mss和socket实现屏幕共享服务端(被监控端)客户端(监控端)方法二:使用PyA

    Python列表的创建与删除的操作指南

    《Python列表的创建与删除的操作指南》列表(list)是Python中最常用、最灵活的内置数据结构之一,它支持动态扩容、混合类型、嵌套结构,几乎无处不在,但你真的会创建和删除列表吗,本文给大家介绍... 目录一、前言二、列表的创建方式1. 字面量语法(最常用)2. 使用list()构造器3. 列表推导式

    Python使用Matplotlib和Seaborn绘制常用图表的技巧

    《Python使用Matplotlib和Seaborn绘制常用图表的技巧》Python作为数据科学领域的明星语言,拥有强大且丰富的可视化库,其中最著名的莫过于Matplotlib和Seaborn,本篇... 目录1. 引言:数据可视化的力量2. 前置知识与环境准备2.1. 必备知识2.2. 安装所需库2.3

    Python数据验证神器Pydantic库的使用和实践中的避坑指南

    《Python数据验证神器Pydantic库的使用和实践中的避坑指南》Pydantic是一个用于数据验证和设置的库,可以显著简化API接口开发,文章通过一个实际案例,展示了Pydantic如何在生产环... 目录1️⃣ 崩溃时刻:当你的API接口又双叒崩了!2️⃣ 神兵天降:3行代码解决验证难题3️⃣ 深度

    Python+FFmpeg实现视频自动化处理的完整指南

    《Python+FFmpeg实现视频自动化处理的完整指南》本文总结了一套在Python中使用subprocess.run调用FFmpeg进行视频自动化处理的解决方案,涵盖了跨平台硬件加速、中间素材处理... 目录一、 跨平台硬件加速:统一接口设计1. 核心映射逻辑2. python 实现代码二、 中间素材处

    python中的flask_sqlalchemy的使用及示例详解

    《python中的flask_sqlalchemy的使用及示例详解》文章主要介绍了在使用SQLAlchemy创建模型实例时,通过元类动态创建实例的方式,并说明了如何在实例化时执行__init__方法,... 目录@orm.reconstructorSQLAlchemy的回滚关联其他模型数据库基本操作将数据添