乱序和屏障2 : UP单核需要处理的CPU乱序问题

2023-10-21 10:50

本文主要是介绍乱序和屏障2 : UP单核需要处理的CPU乱序问题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

    • 前言
    • 弱内存顺序模型
    • 屏障指令的封装
        • rmb/wmb/mb
        • armv7
        • ARMv8
        • RV32&RV64
    • mb/rmb/wmb 的应用
        • 执行流分析
        • 情景1 单用户流
        • 情景2 用户流与异常流

前言

UP : (Uni-Processor)编译器乱序 对应的 编译器 内存屏障 问题 已经在 https://blog.csdn.net/u011011827/article/details/124563277
中提及, 并 做了实验接着 我们 讨论一下 单核需要处理的CPU乱序问题
这个和架构相关
我们主要考察 arm32/arm64/rv32/rv64
他们都是弱内存顺序模型 , 我们先就 弱内存顺序模型考察一番

弱内存顺序模型

对 load & store 的执行顺序没有要求, 只要不将依赖相关的指令乱序,则可以任意乱序
例如 如下,只要没有依赖,都可以乱序(但不一定100%乱序) // 格式为 before-store
load-load
store-store
load-store
store-load

屏障指令的封装

rmb/wmb/mb
读内存屏障本线程所有后续的读操作均在本条指令以后执行
写内存屏障本线程所有之前的写操作均在本条指令以前执行
读写内存屏障本线程所有之前的读写操作均在本条指令以前执行
armv7

在这里插入图片描述

注意 : ARMv7 没有 LD 选项 . ARMv8 有
以Inner Shareable(ISH)为例使用"SY"可防止 所有的 的reorder (read&write memory barrier)load-loadstore-storeload-storestore-load
使用"ST"防止以下的乱序 (write memory barrier)store-store
#define dsb(opt) __asm__ __volatile__ ("dsb " #opt : : : "memory")
#define mb()            dsb() // 等同于 dsb(sy)
#define rmb()           dsb() // 等同于 dsb(sy)
#define wmb()           dsb(st)
ARMv8

在这里插入图片描述

write-read 即 store-load 没必要 屏障吗?没有必要 // TODO如果有依赖,自然不会乱序如果没有依赖,store什么时候发生以及完成都无所谓
#define dsb(opt) __asm__ __volatile__ ("dsb " #opt : : : "memory")
#define mb()            dsb(sy)
#define rmb()           dsb(ld)
#define wmb()           dsb(st)
RV32&RV64

在这里插入图片描述

#define RISCV_FENCE(p, s) \__asm__ __volatile__ ("fence " #p "," #s : : : "memory")#define mb()            RISCV_FENCE(iorw,iorw)
#define rmb()           RISCV_FENCE(ir,ir)
#define wmb()           RISCV_FENCE(ow,ow)

mb/rmb/wmb 的应用

执行流分析
如果只有一个执行流,应该没啥问题, 因为 有依赖关系的指令 不会乱序如果我改了下一条指令呢?是不是要 刷新一下流水线目前 我的代码里面有两个 执行流一个是正常的用户执行流一个是异常执行流
那么就考虑 mb/rmb/wmb 在 两个执行流中会导致的问题
情景1 单用户流
不加屏障的情况command1 	// 改了 command3 所在的地址 的指令 为 异常产生指令(svc/ecall)command2    // nop 指令command3 	// command3 指令(待修改 为 svc/ecall)
加了屏障的情况command1 	// 改了 command3 所在的地址 的指令 为 异常产生指令(svc/ecall)command2    // mb 指令command3 	// command3 指令(待修改 为 svc/ecall)结果 :不加屏障 : command3 已经被加载到 pipeline , 还是执行 原来的 command3加屏障 : command3 已经被加载到 pipeline , 然后flush pipeline , 执行 svc/ecall
实验代码:https://gitee.com/suweishuai/baremetal/commit/b5bd7565c84bf4ad69e4773719b8d6082df086ef
情景2 用户流与异常流
// 初始化 flag = 0 ;
// 初始化 data = 0 ;
User:while (flag == 0);  	// U1printf("%d\n",data); 	// U2
Execption:data = 0x200;			// E1flag = 1;  				// E2会有两个问题:Q1 :User flow 里面  U2 先于 U1 执行 ? Q2 :Execption flow 里面 E2 先于 E1 执行, E1 还未执行,此时 Execption 切出,然后 U1 U2 执行,打印 了 0Q1 可以测试
Q2 不可测试(因为Execption 不会在那时切出) // 只有 如下情况才可测试UserA:while (flag == 0);  	// UA1printf("%d\n",data); 	// UA2UserB:data = 0x200;			// UB1flag = 1;  				// UB2UserB flow 里面 UB2 先于 UB1 执行, UB1 还未执行,此时 UserB 切出,然后 UA1 UA2 执行,打印 了 0Q1 实际情况 // 在四种架构下都不会有 U2 先于 U1 执行 的情况 , 这里拿aarch64来说U1 反汇编 为 U1.1 U1.2 U1.3U2 反汇编 为 U2.1 U2.2 U2.3 U2.4// 看起来也没有依赖,为什么不会发生乱序呢? // TODO40005e44:   b9402be0    ldr w0, [sp, #40]  					// U1.140005e48:   7100001f    cmp w0, #0x0 						// U1.240005e4c:   54ffffc0    b.eq    40005e44 <new_fun+0x74>     // U1.340005e50:   b94027e1    ldr w1, [sp, #36] // 开始准备调用 printf  	// U2.140005e54:   f0000000    adrp    x0, 40008000 <__func__.0+0x2a8>		// U2.240005e58:   91272000    add x0, x0, #0x9c8  						// U2.340005e5c:   97fff414    bl  40002eac <printf> 						// U2.4

这篇关于乱序和屏障2 : UP单核需要处理的CPU乱序问题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/253901

相关文章

关于@MapperScan和@ComponentScan的使用问题

《关于@MapperScan和@ComponentScan的使用问题》文章介绍了在使用`@MapperScan`和`@ComponentScan`时可能会遇到的包扫描冲突问题,并提供了解决方法,同时,... 目录@MapperScan和@ComponentScan的使用问题报错如下原因解决办法课外拓展总结@

MybatisGenerator文件生成不出对应文件的问题

《MybatisGenerator文件生成不出对应文件的问题》本文介绍了使用MybatisGenerator生成文件时遇到的问题及解决方法,主要步骤包括检查目标表是否存在、是否能连接到数据库、配置生成... 目录MyBATisGenerator 文件生成不出对应文件先在项目结构里引入“targetProje

C#使用HttpClient进行Post请求出现超时问题的解决及优化

《C#使用HttpClient进行Post请求出现超时问题的解决及优化》最近我的控制台程序发现有时候总是出现请求超时等问题,通常好几分钟最多只有3-4个请求,在使用apipost发现并发10个5分钟也... 目录优化结论单例HttpClient连接池耗尽和并发并发异步最终优化后优化结论我直接上优化结论吧,

Java内存泄漏问题的排查、优化与最佳实践

《Java内存泄漏问题的排查、优化与最佳实践》在Java开发中,内存泄漏是一个常见且令人头疼的问题,内存泄漏指的是程序在运行过程中,已经不再使用的对象没有被及时释放,从而导致内存占用不断增加,最终... 目录引言1. 什么是内存泄漏?常见的内存泄漏情况2. 如何排查 Java 中的内存泄漏?2.1 使用 J

numpy求解线性代数相关问题

《numpy求解线性代数相关问题》本文主要介绍了numpy求解线性代数相关问题,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 在numpy中有numpy.array类型和numpy.mat类型,前者是数组类型,后者是矩阵类型。数组

解决systemctl reload nginx重启Nginx服务报错:Job for nginx.service invalid问题

《解决systemctlreloadnginx重启Nginx服务报错:Jobfornginx.serviceinvalid问题》文章描述了通过`systemctlstatusnginx.se... 目录systemctl reload nginx重启Nginx服务报错:Job for nginx.javas

Go语言使用Buffer实现高性能处理字节和字符

《Go语言使用Buffer实现高性能处理字节和字符》在Go中,bytes.Buffer是一个非常高效的类型,用于处理字节数据的读写操作,本文将详细介绍一下如何使用Buffer实现高性能处理字节和... 目录1. bytes.Buffer 的基本用法1.1. 创建和初始化 Buffer1.2. 使用 Writ

Redis缓存问题与缓存更新机制详解

《Redis缓存问题与缓存更新机制详解》本文主要介绍了缓存问题及其解决方案,包括缓存穿透、缓存击穿、缓存雪崩等问题的成因以及相应的预防和解决方法,同时,还详细探讨了缓存更新机制,包括不同情况下的缓存更... 目录一、缓存问题1.1 缓存穿透1.1.1 问题来源1.1.2 解决方案1.2 缓存击穿1.2.1

Python视频处理库VidGear使用小结

《Python视频处理库VidGear使用小结》VidGear是一个高性能的Python视频处理库,本文主要介绍了Python视频处理库VidGear使用小结,文中通过示例代码介绍的非常详细,对大家的... 目录一、VidGear的安装二、VidGear的主要功能三、VidGear的使用示例四、VidGea

Python结合requests和Cheerio处理网页内容的操作步骤

《Python结合requests和Cheerio处理网页内容的操作步骤》Python因其简洁明了的语法和强大的库支持,成为了编写爬虫程序的首选语言之一,requests库是Python中用于发送HT... 目录一、前言二、环境搭建三、requests库的基本使用四、Cheerio库的基本使用五、结合req