本文主要是介绍暑假篇——NOIP2017模拟赛题解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
目录
一.优雅的序列
1.题目
2.题解
3.Code
二.甲虫入侵
1.题目
2.题解
3.Code
三.大逃亡
1.题目
2.题解
3.Code
谢谢!
虽然三道题上了200,但还是有点菜
一.优雅的序列
1.题目
点击打开链接
2.题解
这道题难就难在重复的数字上,如果没有重复的数字,直接n-1。
不难发现,越小的数越要往前面放,但是又为了尽量避免重复,我们就轮换着放,比如:
1 1 1 2 3 4 4 4 5
就应该变成:
1 2 3 4 5 1 4 1 4
这样就能保证有最多对a[i] < a[i + 1];
具体实践如下:
step1:把每个数字排序后的起点和重复数量存在一个pair数组内;
step2:用len表示最后排好的数组长度,每次枚举每一个数字,直到枚举完每一个数字为止。
step3:统计满足条件的i的个数。
3.Code
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
#define LL long long
int n, k, len;
LL a[100005], ans, a1[100005];
pair <int, int> p[100005];
int main (){//freopen ("grace.in", "r", stdin);//freopen ("grace.out", "w", stdout);scanf ("%d", &n);for (register int i = 1; i <= n; i ++)scanf ("%lld", &a[i]);sort (a + 1, a + 1 + n);for (register int i = 2; i <= n; i ++){if (a[i] == a[i - 1]){int j;for (j = i; j <= n; j ++)if (a[j] != a[j - 1])break;p[++ k].first = i - 1;p[k].second = j - i + 1;i = j;}else{p[++ k].first = i - 1;p[k].second = 1;}}if (a[n] != a[n - 1]){p[++ k].first = n;p[k].second = 1;}while (len < n){for (register int i = 1; i <= k; i ++){if (p[i].second){a1[++ len] = a[p[i].first];p[i].first ++;p[i].second --;}}}for (register int i = 1; i <= len; i ++)if (a1[i] < a1[i + 1])ans ++;printf ("%lld\n", ans);return 0;
}
二.甲虫入侵
1.题目
点击打开链接
2.题解
这道题是整个最难的题目,要用离散化+暴力搜索。
首先输入时可以把每次移动看做一个点,起点是(0,0)例如:样例第一个就是:(8,0)
每次移动要存入两个点,这是为后面的离散化做准备的;
然后,对于我们存入的每一个点,我们要进行去重操作(里面要排序),横坐标和纵坐标分别进行。
接着就进行离散化,我存入的每一个点都对应他们自己的一个下标,就可以用这些下标表示他们的值,一共只有1000个点,离散化之后整个的空间就变成了2000。
然后再来标记农夫走过的田地,这里我们用upper_bound找到农夫每次走之后的坐标离散化之后的下标,把洒过农药的田地标为1。
接着暴力搜索一波,把甲虫能到的位置标为-1;
最后就是统计面积,我们先来看一看离散化之后农场的样子:(标黄的是我们要求的不被甲虫侵犯的面积)
相当于每一个点都被我扩散成了两个点,那么面积的求法就是1 * 4 + (x2 - x1 - 1) * (y1 - y2 + 1) + (y1 - y2 - 1) * (x2 - x1 + 1);
就这样求面积就完了。
有点懵,上代码:
3.Code
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
#define LL long long
#define M 2005
int n, len[M], cntx, cnty, curx, cury, realx[M], realy[M], vis[M][M];
char dir[M];
int d[4][2] = {{1, 0}, {-1, 0}, {0, -1}, {0, 1}};
LL ans;
void unique (int *x, int &cnt){sort (x, x + cnt);int cnt1 = 1;for (int i = 1; i < cnt; i ++)if (x[i] != x[i - 1])x[cnt1 ++] = x[i];cnt = cnt1;
}
bool pd (int tox, int toy){if (tox < 0 || tox >= cntx || toy < 0 || toy >= cnty || vis[tox][toy])return 0;return 1;
}
void DFS (int x, int y){vis[x][y] = -1;for (int i = 0; i < 4; i ++){int tox = x + d[i][0];int toy = y + d[i][1];if (pd (tox, toy))DFS (tox, toy);}
}
int main (){scanf ("%d", &n);for (int i = 1; i <= n; i ++){scanf ("\n%c %d", &dir[i], &len[i]);if (dir[i] == 'L'){realx[cntx ++] = curx + 1;realy[cnty ++] = cury;realx[cntx ++] = curx -= len[i];realy[cnty ++] = cury + 1;}if (dir[i] == 'R'){realx[cntx ++] = curx;realy[cnty ++] = cury;realx[cntx ++] = (curx += len[i]) + 1;realy[cnty ++] = cury + 1;}if (dir[i] == 'U'){realx[cntx ++] = curx;realy[cnty ++] = cury;realx[cntx ++] = curx + 1;realy[cnty ++] = (cury += len[i]) + 1;}if (dir[i] == 'D'){realx[cntx ++] = curx;realy[cnty ++] = cury + 1;realx[cntx ++] = curx + 1;realy[cnty ++] = cury -= len[i];}}unique (realx, cntx);unique (realy, cnty);int Indexx = lower_bound (realx, realx + cntx, curx = 0) - realx, Indexy = lower_bound (realy, realy + cnty, cury = 0) - realy, now;for (int i = 1; i <= n; i ++){if (dir[i] == 'L'){now = lower_bound (realx, realx + cntx, curx -= len[i]) - realx;for ( ; Indexx > now; Indexx --)vis[Indexx][Indexy] = 1;}if (dir[i] == 'R'){now = lower_bound (realx, realx + cntx, curx += len[i]) - realx;for ( ; Indexx < now; Indexx ++)vis[Indexx][Indexy] = 1;}if (dir[i] == 'U'){now = lower_bound (realy, realy + cnty, cury += len[i]) - realy;for ( ; Indexy < now; Indexy ++)vis[Indexx][Indexy] = 1;}if (dir[i] == 'D'){now = lower_bound (realy, realy + cnty, cury -= len[i]) - realy;for ( ; Indexy > now; Indexy --)vis[Indexx][Indexy] = 1;}}vis[Indexx][Indexy] = 1;for (int i = 0; i <= cntx; i ++){if (! vis[i][0]) DFS (i, 0);if (! vis[i][cnty]) DFS (i, cnty);}for (int i = 1; i < cnty; i ++){if (! vis[0][i]) DFS (0, i);if (! vis[cntx][i]) DFS (cntx, i);}for (int i = 1; i <= cntx; i ++){for (int j = 1; j <= cnty; j ++){if (~vis[i][j])ans += (LL) (realx[i] - realx[i - 1]) * (realy[j] - realy[j - 1]);}}printf ("%lld\n", ans);return 0;
}
三.大逃亡
1.题目
点击打开链接
2.题解
很简单,因为答案具有单调性,直接二分答案,然后暴力搜索检查答案,注意有细节,特别是二分和距离有可能是0
3.Code
#include <cstdio>
#include <iostream>
#include <cstring>
#include <queue>
using namespace std;
#define M 10005
struct node {int xx, yy, step;node (){};node (int XX, int YY, int STEP){xx = XX;yy = YY;step = STEP;}
};
int n, X, Y, sx, sy, tx, ty, dx[M], dy[M], ans1, ans2, dis[1005][1005];
int dir[4][2] = {{1, 0}, {0, -1}, {-1, 0}, {0, 1}};
bool flag[1005][1005], vis[1005][1005];
int fabs (int x){if (x < 0)return -x;return x;
}
bool pd1 (int tox, int toy){if (tox < 0 || tox >= X || toy < 0 || toy >= Y || vis[tox][toy])return 0;return 1;
}
void prepare (){queue <node> Q;for (int i = 1; i <= n; i ++)Q.push (node (dx[i], dy[i], 0));while (! Q.empty ()){node f = Q.front ();if (! dis[f.xx][f.yy])dis[f.xx][f.yy] = f.step;Q.pop ();for (int i = 0; i < 4; i ++){int tox = f.xx + dir[i][0];int toy = f.yy + dir[i][1];if (pd1 (tox, toy)){vis[tox][toy] = 1;Q.push (node (tox, toy, f.step + 1));}}}
}
bool pd (int tox, int toy, int now){if (tox < 0 || tox >= X || toy < 0 || toy >= Y || vis[tox][toy] || dis[tox][toy] < now)return 0;return 1;
}
inline int BFS (int now){memset (vis, 0, sizeof vis);queue <node> Q;vis[sx][sy] = 1;Q.push (node (sx, sy, 0));while (! Q.empty ()){node f = Q.front ();Q.pop ();if (f.xx == tx && f.yy == ty)return f.step;for (register int i = 0; i < 4; i ++){int tox = f.xx + dir[i][0];int toy = f.yy + dir[i][1];if (pd (tox, toy, now)){vis[tox][toy] = 1;Q.push (node (tox, toy, f.step + 1));}}}return -1;
}
inline int check (int now){int tmp = BFS (now);return tmp;
}
int main (){//freopen ("escape.in", "r", stdin);//freopen ("escape.out", "w", stdout);int l = 0, r = 0x3f3f3f3f, mid;scanf ("%d %d %d %d %d %d %d", &n, &X, &Y, &sx, &sy, &tx, &ty);for (register int i = 1; i <= n; i ++){scanf ("%d %d", &dx[i], &dy[i]);r = min (r, fabs (dx[i] - sx) + fabs (dy[i] - sy));r = min (r, fabs (dx[i] - tx) + fabs (dy[i] - ty));}prepare ();int tmp;while (l + 1 < r){mid = (l + r) / 2;tmp = check (mid);if (tmp != -1){l = mid;}elser = mid - 1;}ans1 = l, ans2 = tmp;int tp = check (r);if (tp != -1)ans1 = r, ans2 = tmp;printf ("%d %d\n", ans1, ans2);return 0;
}
谢谢!
这篇关于暑假篇——NOIP2017模拟赛题解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!