Detectron2安装测试

2023-10-20 11:50
文章标签 安装 测试 detectron2

本文主要是介绍Detectron2安装测试,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Detectron2安装测试

Detectron2是FAIR开源的基于Pytorch1.3.1的目标检测算法实现.

Detectron2-github

1.Detectron2安装

1.1 安装配置基本环境

可参考项目中的Installtion

  • conda create -n detectron2 python=3.7
  • conda activate detectron2
  • PyTorch 1.3
  • torchvision版本需要和pytorch的版本相适应,可参考 pytorch.org 安装。conda install pytorch torchvision cudatoolkit=10.1 -c pytorch
  • OpenCV, Demo和显示时需要使用, pip install opencv-python
  • fvcore: pip install 'git+https://github.com/facebookresearch/fvcore'
  • pycocotools: pip install cython; pip install 'git+https://github.com/cocodataset/cocoapi.git#subdirectory=PythonAPI'
  • GCC >= 4.9

注意:conda安装添加清华源

conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge 
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/msys2/
conda config --set show_channel_urls yes

1.2 检测coda是否正确安装

运行如下代码,检查cuda安装是否正确

python -c 'import torch; from torch.utils.cpp_extension import CUDA_HOME; print(torch.cuda.is_available(), CUDA_HOME)'

输出:true /usr/local/cuda,我用的是 cuda10.1

如不是上述输出结果,查看.bashrc环境变量设置是否正确,如下设置:

# vim ~/.bashrc
export CUDA_HOME=/usr/local/cuda
export PATH=$PATH:/usr/local/cuda/bin
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda/lib64:/usr/local/cuda/lib
export LIBRARY_PATH=$LIBRARY_PATH:/usr/local/cuda/lib64

source .bashrc 使设置的环境变量生效

1.3 detectron2 安装:

git clone https://github.com/facebookresearch/detectron2.git
cd detectron2
python setup.py build develop

2.Detectron2测试

2.1 目标检测

模型提前下载好,存在目录下

python demo/demo.py  \--config-file /home/**/project/detectron2/configs/COCO-Detection/faster_rcnn_R_50_FPN_3x.yaml \--input ceshi/test.jpg --output outputs/ \--opts MODEL.WEIGHTS '/home/**/project/detectron2/pre_train_model/COCO-Detection/faster_rcnn_R_50_FPN_1x/137257794/model_final_b275ba.pkl'

在这里插入图片描述在CPU环境下配置好环境也可以进行测试,可参考Detectron2在CPU上执行出现“ Torch not compiled with CUDA enabled”的错误

2.2 实例分割

eg1:

python demo/demo.py  \--config-file /home/**/project/detectron2/configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml \--input ceshi/test.jpg --output outputs/ \--opts MODEL.WEIGHTS '/home/**/project/detectron2/pre_train_model/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x/137849600/model_final_f10217.pkl'

在这里插入图片描述

eg2:

import numpy as np
import cv2 as cv
from PIL import Image
#from matplotlib import pyplot
import matplotlib.pyplot as plt
import random
#from google.colab.patches import cv2_imshowimport detectron2
from detectron2.utils.logger import setup_logger
setup_logger()from detectron2.engine import DefaultPredictor
from detectron2.config import get_cfg
from detectron2.utils.visualizer import Visualizer
from detectron2.data import MetadataCatalog
#下载图片
#wget http://images.cocodataset.org/val2017/000000439715.jpg -O input.jpg
im = cv.imread("/home/**/project/detectron2/ceshi/input.jpg")cfg = get_cfg()
cfg.merge_from_file("/home/**/project/detectron2/configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml")
cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.5  #模型阈值
#cfg.MODEL.WEIGHTS = "./COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x/137849600/model_final_f10217.pkl"
cfg.MODEL.WEIGHTS = "/home/**/project/detectron2/pre_train_model/model_final_f10217.pkl"
predictor = DefaultPredictor(cfg)
outputs = predictor(im)pred_classes = outputs["instances"].pred_classes
pred_boxes = outputs["instances"].pred_boxes#在原图上画出检测结果
v = Visualizer(im[:, :, ::-1], MetadataCatalog.get(cfg.DATASETS.TRAIN[0]), scale=1.2)
v = v.draw_instance_predictions(outputs["instances"].to("cpu"))
plt.figure(2)
plt.imshow(v.get_image())
plt.show()

在这里插入图片描述
2.3 关键点检测

eg1:

python demo/demo.py  \--config-file /home/**/project/detectron2/configs/COCO-Keypoints/keypoint_rcnn_R_50_FPN_3x.yaml \--input ceshi/test.jpg ceshi/test1.jpg ceshi/test2.jpg --output outputs/ \--opts MODEL.WEIGHTS '/home/**/project/detectron2/pre_train_model/COCO-Keypoints/keypoint_rcnn_R_50_FPN_3x/137849621/model_final_a6e10b.pkl'

在这里插入图片描述

eg2:

import numpy as np
import cv2 as cv
from PIL import Image
#from matplotlib import pyplot
import matplotlib.pyplot as plt
import random
#from google.colab.patches import cv2_imshowimport detectron2
from detectron2.utils.logger import setup_logger
setup_logger()from detectron2.engine import DefaultPredictor
from detectron2.config import get_cfg
from detectron2.utils.visualizer import Visualizer
from detectron2.data import MetadataCatalogim = cv.imread("/home/**/project/detectron2/ceshi/input.jpg")cfg = get_cfg()
cfg.merge_from_file("/home/**/project/detectron2/configs/COCO-Keypoints/keypoint_rcnn_R_50_FPN_3x.yaml")
cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.5  #模型阈值
#cfg.MODEL.WEIGHTS = "./COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x/137849600/model_final_f10217.pkl"
cfg.MODEL.WEIGHTS = "/home/**/project/detectron2/pre_train_model/COCO-Keypoints/keypoint_rcnn_R_50_FPN_3x/137849621/model_final_a6e10b.pkl"
predictor = DefaultPredictor(cfg)
outputs = predictor(im)pred_classes = outputs["instances"].pred_classes
pred_boxes = outputs["instances"].pred_boxes#在原图上画出检测结果
v = Visualizer(im[:, :, ::-1], MetadataCatalog.get(cfg.DATASETS.TRAIN[0]), scale=1.2)
v = v.draw_instance_predictions(outputs["instances"].to("cpu"))
plt.figure(2)
#plt.imshow(v.get_image()[:, :, ::-1])
plt.imshow(v.get_image())
plt.show()

在这里插入图片描述

2.4 全景分割

eg1:

python demo/demo.py  \--config-file /home/**/project/detectron2/configs/COCO-PanopticSegmentation/panoptic_fpn_R_101_3x.yaml \--input ceshi/test.jpg ceshi/test1.jpg ceshi/test2.jpg --output outputs/ \--opts MODEL.WEIGHTS '/home/**/project/detectron2/pre_train_model/COCO-PanopticSegmentation/panoptic_fpn_R_101_3x/139514519/model_final_cafdb1.pkl'

在这里插入图片描述

eg2:

import numpy as np
import cv2 as cv
from PIL import Image
#from matplotlib import pyplot
import matplotlib.pyplot as plt
import random
#from google.colab.patches import cv2_imshowimport detectron2
from detectron2.utils.logger import setup_logger
setup_logger()from detectron2.engine import DefaultPredictor
from detectron2.config import get_cfg
from detectron2.utils.visualizer import Visualizer
from detectron2.data import MetadataCatalogim = cv.imread("/home/**/project/detectron2/ceshi/input.jpg")cfg = get_cfg()
cfg.merge_from_file("/home/**/project/detectron2/configs/COCO-PanopticSegmentation/panoptic_fpn_R_101_3x.yaml")
cfg.MODEL.WEIGHTS = "/home/**/project/detectron2/pre_train_model/COCO-PanopticSegmentation/panoptic_fpn_R_101_3x/139514519/model_final_cafdb1.pkl"
predictor = DefaultPredictor(cfg)
panoptic_seg, segments_info = predictor(im)["panoptic_seg"]
v = Visualizer(im[:, :, ::-1], MetadataCatalog.get(cfg.DATASETS.TRAIN[0]), scale=1.2)
v = v.draw_panoptic_seg_predictions(panoptic_seg.to("cpu"), segments_info)
plt.imshow(v.get_image())
plt.show()

在这里插入图片描述

3.感谢

  1. https://github.com/facebookresearch/detectron2/blob/master/INSTALL.md

  2. https://www.aiuai.cn/aifarm1288.html#1.detectron2%E5%AE%89%E8%A3%85

如有错误,请指教。

这篇关于Detectron2安装测试的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/246922

相关文章

如何解决mmcv无法安装或安装之后报错问题

《如何解决mmcv无法安装或安装之后报错问题》:本文主要介绍如何解决mmcv无法安装或安装之后报错问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录mmcv无法安装或安装之后报错问题1.当我们运行YOwww.chinasem.cnLO时遇到2.找到下图所示这里3.

Python 安装和配置flask, flask_cors的图文教程

《Python安装和配置flask,flask_cors的图文教程》:本文主要介绍Python安装和配置flask,flask_cors的图文教程,本文通过图文并茂的形式给大家介绍的非常详细,... 目录一.python安装:二,配置环境变量,三:检查Python安装和环境变量,四:安装flask和flas

Win11安装PostgreSQL数据库的两种方式详细步骤

《Win11安装PostgreSQL数据库的两种方式详细步骤》PostgreSQL是备受业界青睐的关系型数据库,尤其是在地理空间和移动领域,:本文主要介绍Win11安装PostgreSQL数据库的... 目录一、exe文件安装 (推荐)下载安装包1. 选择操作系统2. 跳转到EDB(PostgreSQL 的

Linux系统中卸载与安装JDK的详细教程

《Linux系统中卸载与安装JDK的详细教程》本文详细介绍了如何在Linux系统中通过Xshell和Xftp工具连接与传输文件,然后进行JDK的安装与卸载,安装步骤包括连接Linux、传输JDK安装包... 目录1、卸载1.1 linux删除自带的JDK1.2 Linux上卸载自己安装的JDK2、安装2.1

Linux卸载自带jdk并安装新jdk版本的图文教程

《Linux卸载自带jdk并安装新jdk版本的图文教程》在Linux系统中,有时需要卸载预装的OpenJDK并安装特定版本的JDK,例如JDK1.8,所以本文给大家详细介绍了Linux卸载自带jdk并... 目录Ⅰ、卸载自带jdkⅡ、安装新版jdkⅠ、卸载自带jdk1、输入命令查看旧jdkrpm -qa

MySQL Workbench 安装教程(保姆级)

《MySQLWorkbench安装教程(保姆级)》MySQLWorkbench是一款强大的数据库设计和管理工具,本文主要介绍了MySQLWorkbench安装教程,文中通过图文介绍的非常详细,对大... 目录前言:详细步骤:一、检查安装的数据库版本二、在官网下载对应的mysql Workbench版本,要是

Linux安装MySQL的教程

《Linux安装MySQL的教程》:本文主要介绍Linux安装MySQL的教程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录linux安装mysql1.Mysql官网2.我的存放路径3.解压mysql文件到当前目录4.重命名一下5.创建mysql用户组和用户并修

pip无法安装osgeo失败的问题解决

《pip无法安装osgeo失败的问题解决》本文主要介绍了pip无法安装osgeo失败的问题解决,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 进入官方提供的扩展包下载网站寻找版本适配的whl文件注意:要选择cp(python版本)和你py

Android App安装列表获取方法(实践方案)

《AndroidApp安装列表获取方法(实践方案)》文章介绍了Android11及以上版本获取应用列表的方案调整,包括权限配置、白名单配置和action配置三种方式,并提供了相应的Java和Kotl... 目录前言实现方案         方案概述一、 androidManifest 三种配置方式

Python解析器安装指南分享(Mac/Windows/Linux)

《Python解析器安装指南分享(Mac/Windows/Linux)》:本文主要介绍Python解析器安装指南(Mac/Windows/Linux),具有很好的参考价值,希望对大家有所帮助,如有... 目NMNkN录1js. 安装包下载1.1 python 下载官网2.核心安装方式3. MACOS 系统安