痞子衡嵌入式:并行NAND接口标准(ONFI)及SLC Raw NAND简介

2023-10-19 01:30

本文主要是介绍痞子衡嵌入式:并行NAND接口标准(ONFI)及SLC Raw NAND简介,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!


  大家好,我是痞子衡,是正经搞技术的痞子。今天痞子衡给大家介绍的是ONFI标准及SLC Raw NAND

  NAND Flash是嵌入式世界里常见的存储器,对于嵌入式开发而言,NAND主要分为两大类:Serial NAND、Raw NAND,这两类NAND的差异是很大的(软件驱动开发角度而言),即使你掌握其中一种,也不代表你能了解另一种。
  Raw NAND是相对于Serial NAND而言的,Serial NAND即串行接口的NAND Flash,而Raw NAND是并行接口的NAND FLASH,早期并行接口通信数据率是明显高于串行通信数据率的,但随着串行通信速度越来越快,并行接口速度优势显得不那么重要了,反而因信号线太多导致设计成本较高(PCB走线复杂)显得有点不合潮流。但其实这么说对Raw NAND是不公平的,现在的Serial NOR/NAND信号线其实也不少,比如高速的串行HyperFlash信号线数量已经直逼x8 bit的Raw NAND FLASH,所以Raw NAND市场还是坚挺的,你会发现各大存储厂商都还在不断推出Raw NAND FLASH产品。

一、ONFI标准由来

  说到Raw NAND发展史,其实早期的Raw NAND没有统一标准,虽然早在1989年Toshiba便发表了NAND Flash结构,但具体到Raw NAND芯片,各厂商都是自由设计,因此尺寸不统一、存储结构差异大、接口命令不通用等问题导致客户使用起来很难受。为了改变这一现状,2006年几个主流的Raw NAND厂商(Hynix、Intel、Micron、Phison、Sony、ST)联合起来商量制订一个Raw NAND标准,这个标准叫Open NAND Flash Interface,简称ONFI,2006年12月ONFI 1.0标准正式推出,此标准一经推出大受欢迎(好像不欢迎也不行,那些大厂说了算啊),此后几乎所有的Raw NAND厂商都按照ONFI标准设计生产Raw NAND,从此Raw NAND世界清静了,不管哪家生产的Raw NAND对嵌入式设计者来说几乎都是一样的,至少在驱动代码层面是一样的,那么各厂商竞争优势在哪呢?主要在三个方面:数据存取速率、ECC能力、ONFI之外的个性化功能。
  你可以从 ONFI官网 下载ONFI标准手册,从2006年推出1.0标准至今,ONFI标准已经发展到4.1,这也说明了Raw NAND技术在不断更新升级。

onfi_specs.PNG

二、SLC Raw NAND原理

2.1 Raw NAND分类

  从软件驱动开发角度而言,Raw NAND可以从以下几个方面进一步细分:

单元层数(bit/cell):SLC(1bit/cell) / MLC(2bit/cell) / TLC(3bit/cell) / QLC(4bit/cell)
数据线宽度:x8 / x16
信号线模式:Asynchronous / Synchronous
数据采集模式:SDR / DDR
接口命令标准:非标 / ONFI

  本文的主要研究对象是兼容ONFI 1.0标准的Asynchronous SDR SLC NAND Flash。

2.2 Raw NAND内存模型

  ONFI规定了Raw NAND内存单元从大到小最多分为如下5层:Device、LUN(Die)、Plane、Block、Page(如下图所示),其中Page和Block是必有的,因为Page是读写的最小单元,Block是擦除的最小单元。而LUN和Plane则不是必有的(如没有,可认为LUN=1, Plane=1),一般在大容量Raw NAND(至少8Gb以上)上才会出现。

onfi_mem_model.PNG

  根据以上5层分级的内存模型,Raw NAND地址也很自然地由如下图中多个部分组成:

Raw NAND Address = LUN Addr + Block Addr + Page Addr + Byte Addr (Column Addr)

  可能有朋友对Plane Address bit的位置有疑问,其实结合上面内存模型图就不难理解了,每个Plane里包含的Block并不是连续的,而是与其他Plane含有的Block是交错的。

onfi_mem_addressing.PNG

2.3 Raw NAND信号与封装

  ONFI规定了Raw NAND信号线与封装,如下是典型的x8 Raw NAND内部结构图,除了内存单元外,还有两大组成,分别是IO控制单元和逻辑控制单元,信号线主要挂在IO控制与逻辑单元,x8 Raw NAND主要有15根信号线(其中必须的是13根,WP#和R/B#可以不用),关于各信号线具体作用,请查阅相关文档。

onfi_block_diagram.PNG

  ONFI规定的封装标准有很多,比如TSOP48、LGA52、BGA63/100/132/152/272/316,其中对于嵌入式开发而言,最常用的是如下图扁平封装的TSOP-48,这种封装常用于容量较小的Raw NAND(1/2/4/8/16/32Gb),1-32Gb容量对于嵌入式设计而言差不多够用,且TSOP-48封装易于PCB设计,因此得以流行。

onfi_tsop48.PNG

2.4 Raw NAND接口命令

  ONFI 1.0规定了Raw NAND接口命令,如下表所示,其中一部分是必须要支持的(M),还有一部分是可选支持的(O)。必须支持的命令里最常用的是Read(Read Page)、Page Program、Block Erase这三条,涵盖读写擦最基本的三种操作。

onfi_cmd_set.PNG

  除了读写擦这三个最基本命令外,还有一个必有命令也非常常用,这个命令是Read Status,用于获取命令执行状态与结果,ONFI规定Raw NAND内部必须包含一个8bit的状态寄存器,这个状态寄存器用来存储NAND命令执行状态与结果,其中有两个bit(RDY-SR[6]和FAIL-SR[0])需要特别关注,RDY用于指示命令执行状态(这个bit与外部R/B#信号线功能是一致的),FAIL用于返回命令执行结果(主要是有无ECC错误)。

onfi_status_register.PNG

  此外,还有一个必有命令不得不提,这个命令是Read Parameter Page,用于获取芯片内部存储的出厂信息(包括内存结构、特性、时序、其他行为参数等),这个Parameter Page大小为256Bytes,其结构已由ONFI规定如下表,痞子衡已经圈出了一些重要信息,在设计NAND软件驱动时,可以通过获取这个Parameter Page来做到代码通用。

onfi_parameter_page.PNG
onfi_parameter_page2.PNG

2.5 Raw NAND数据速率

  前面讲了,数据存取速率这个技术指标是各厂商竞争力的体现,对于这个指标,其实ONFI标准定义了一部分,我们知道Raw NAND数据存取操作是以Page为单位的,Page操作时间决定了数据存取速率,Page操作时间由3部分组成:

Page操作时间(tReadPage) = Page命令操作时间(tCmd) + Page命令执行等待时间(tBusy) + Page数据操作时间(tData

  以上三部分时间里,ONFI定义了Page命令/数据操作时间标准,但Page命令执行等待时间无法强制,因此各厂商NAND速度差异主要是这个Page命令执行等待时间不同造成的
  以异步模式Read Page命令(0x00 - 0x30)为例讲解,下图是Read Page完整时序简图,0x00是主机发送的第一个字节,用于通知NAND Device主机想要读取Page,随后的5个字节发送的是地址数据,用于通知NAND Device主机想要从什么地址获取数据,0x30是主机发送的最后一个字节,用于通知NAND Device读取Page命令发送已经完成,至此命令操作周期已经结束,NAND Device此时开始进行内部处理流程:拉低外部引脚R/B#或将内部寄存器SR[6]置0表明我正在忙,然后从内存块里将主机指定地址所在的Page数据全部拷贝到临时缓存区(Page Buffer),对这一整个Page数据进行ECC校验,如Page数据校验通过,拉高外部引脚R/B#或将内部寄存器SR[6]置1表明我已经准备好了,至此命令执行等待周期已经结束,主机开始按Byte依次将Page数据读出来,所有Page数据全部都被读出来后,整个Read Page时序就结束了。

onfi_read_timing.PNG

  下图是命令/地址操作具体时序,根据时序图我们可以粗略计算出tCmd

tCmd = (cmdBytes + addrBytes) x (tWP + tWH) = 7 * (tWP + tWH)

onfi_command_latch_cycle.PNG

onfi_address_latch_cycle.PNG

  下图是数据读取操作具体时序,分为两种:Non-EDO模式(RE#上沿采样数据)和EDO模式(RE#下沿采样数据),从图中我们知道tRC是RE#信号的一个周期,通俗地说,Non-EDO模式一般用于低速模式(即tRC > 30ns时),而EDO模式一般用于高速模式(即tRC < 30ns时)。根据时序图我们可以粗略计算出tData

tData = dataBytesInOnePage * tRC

onfi_data_output_cycle.PNG
onfi_data_output_cycle_edo.PNG

  让我们把tCmd和tData代入tReadPage计算公式可得如下等式,我们知道其中tBusy是无法得知的,那么其他三个时间tWP、tWH、tRC到底是多少呢?

tReadPage = 7 x (tWP + tWH) + tBusy + dataBytesInOnePage * tRC

  继续查看ONFI手册可以找到答案,ONFI规定了六种timing mode(0-5),timing mode table里指明了所有时序相关的参数数值范围,当然也包括tWP、tWH、tRC,以最快的timing mode 5来计算:

tReadPage = 7 x 20ns + tBusy + dataBytesInOnePage * 20ns = (dataBytesInOnePage + 7) x 20ns + tBusy

onfi_timing_mode_table.PNG

  我们似乎离答案更近一步了,但tBusy是多少这个问题始终困扰着我们,其实痞子衡带你绕了路,想要知道Read Page的时间没有这么复杂,我们可以从任何一款Raw NAND数据手册的扉页Features里直接找到答案,如下是Micron生产的型号为MT29F4GxxABBxA的部分feature:

• Open NAND Flash Interface (ONFI) 1.0-compliant
• Single-level cell (SLC) technology
• Organization– Page size x8: 2112 bytes (2048 + 64 bytes)– Page size x16: 1056 words (1024 + 32 words)– Block size: 64 pages (128K + 4K bytes)– Plane size: 2 planes x 2048 blocks per plane– Device size: 4Gb: 4096 blocks; 8Gb: 8192 blocks; 16Gb: 16,384 blocks
• Asynchronous I/O performance– tRC/tWC: 20ns (3.3V), 25ns (1.8V)
• Array performance– Read page: 25μs– Program page: 200μs (TYP: 1.8V, 3.3V)– Erase block: 700μs (TYP)
• Operating voltage range– VCC: 2.7–3.6V– VCC: 1.7–1.95V

  从feature里我们可以知道tReadPage最小为25us(此数值应是在x16 bits,timing mode 5下得出的最快速度),那么可以反算出tBusy = 25us - 20ns * (1024 + 7) = 4.38us,知道了tBusy让我们计算一下x8 bits下的tReadPage = 20ns * (2048 + 7) + 4.38us = 45.48us,再计算x8 bits下的读取数据率 2048Bytes / 45.48us = 360.246Mbps,这个数据率对于普通嵌入式应用来说其实是够快的。

2.6 Raw NAND坏块与ECC

  Raw NAND开发绕不开坏块(Bad Block)问题,这是NAND Flash区别于NOR Flash的一个重要特点。NAND技术上允许坏块的存在,这降低了NAND生产工艺要求,因此NAND单位容量价格比NOR低。
  既然物理上的坏块无法避免,那有什么方法可以改善/解决坏块问题呢?方法当然是有的,这个方法就是ECC(Error Correcting Code),ECC的具体实现原理详见痞子衡的另一篇文章 汉明码校验(Hamming Code SEC-DED),在这里你只需要知道ECC是一种错误检测与纠正算法,它通过对一定量的数据块(一般是256/512bytes)进行计算得到ECC码(一般8bytes),在Page Program时将原始Page数据与ECC码一同存入NAND Flash,在Read Page时同时获取Page数据与ECC码再进行一次计算,如果该Page数据没有ECC错误或者bit错误能够被ECC码纠正,那么Page读写操作就能够正常进行,如果bit错误个数太多不能够被纠正,那么该Page所在的块就应该被认定为一个坏块。
  ECC能力主要根据纠正单数据块中错误bit个数来区分的,最基本的ECC只能够纠正1bit错误,强一点的ECC可以纠正4或者8个甚至更多的错误bit。
  让我们用一款实际芯片来具体分析坏块与ECC,依旧以前面分析过的Micron生产的型号为MT29F4G08ABBxA为例,下图是其内存结构图,从图中我们可以知道这款NAND的Page大小为2KB,但如果你仔细看,你会发现每个Page还额外含有64Bytes数据,这个64Bytes区域即所谓的Spare Area,这个区域到底是干嘛用的呢?

onfi_mt29f4g08_arch.PNG

  下图是Spare Area的mapping图,由于每个Page是2KB,而ECC计算块是512Bytes,因此Page区域被均分为4块,分别是Main 0、1、2、3,每块大小为512Bytes,而相应的Spare Area也被均分为4块,分别是Spare 0、1、2、3,每块大小为16bytes,与Main区域一一对应。每个Spare x由2bytes坏块信息、8bytes ECC码、6bytes用户数据组成。要特别说一下的是ECC区域,当芯片硬件ECC功能开启时,8bytes ECC码区域会被自动用来存储ECC信息,而如果芯片没有硬件ECC功能,这个区域可以用来手动地存放软件ECC值。

onfi_mt29f4g08_spare_area.PNG

  下图是芯片Error管理相关信息,也包含了ECC,从图中我们可以知道这款芯片ECC是4bits,坏块是用0x00来标识的,并且承诺该芯片出厂时每个Die里所含有的4096个block最多只会有80个坏块。这些信息除了在芯片手册里可以找到之外,前面介绍过的ONFI Parameter Page也同样记录了。

onfi_mt29f4g08_ecc_detail.PNG
onfi_mt29f4g08_ecc_detail2.PNG

2.7 Raw NAND个性化功能

  Raw NAND还有一些个性化的功能,这个是因厂商而异的,ONFI规定了两个可选的命令Get/Set Feature,个性化功能可以通过Get/Set Feature命令来扩展。下表是ONFI 1.0规定的Feature address范围,其中0x01是Timing Mode,0x80-0xFF用于各厂商实现自己的特色功能。

onfi_feature_address.PNG

  关于Timing Mode地址的具体定义如下,ONFI规定芯片上电初始为Timing mode 0,即最低速的模式,如果我们想要更快的NAND访问速度,必须使用Set feature命令将Timing mode设置到想要的数值

onfi_feature_address_01h_timing_mode.PNG

  继续以前面分析过的Micron生产的型号为MT29F4G08ABBxA为例,下图是该芯片的Feature定义,除了ONFI规定之外,还定义了自己的特色部分(0x80, 0x81, 0x90)。

onfi_mt29f4g08_feature_address.PNG

  比如0x90定义的Array operation mode,我们可以通过其实现OTP控制以及硬件ECC的开关。

onfi_mt29f4g08_feature_address_90h_array_mode.PNG

三、SLC Raw NAND产品

  Raw NAND厂商产品有两种,一种是裸Raw NAND芯片,另一种是含Raw NAND的存储方案(比如SSD硬盘),对于嵌入式开发而言,我们更关心的是裸Raw NAND芯片产品,下面痞子衡收集了可以售卖SLC Raw NAND芯片的厂商及产品系列:

厂商芯片系列官方网址
MicronMT29Fhttps://www.micron.com
slc-nand-part-catalog
NumonyxNAND256, NAND512https://www.micron.com
slc-nand-part-catalog
MacronixMX30LF, MX60LFhttp://www.macronix.com
slc-nand-part-catalog
WinbondW29Nhttp://www.winbond.com.tw
slc-nand-part-catalog
SpansionS34ML, S34MS, S34SLhttp://www.cypress.com/
slc-nand-part-catalog
ISSIIS34ML, IS34MWwww.issi.com
slc-nand-part-catalog
ToshibaTC58B, TC58Nhttp://toshiba.semicon-storage.com
SK HynixH27Uhttp://www.hynix.com
slc-nand-part-catalog
SamsungK9F, K9Khttp://www.samsung.com/semiconductor/

  至此,ONFI标准及SLC Raw NAND痞子衡便介绍完毕了,掌声在哪里~~~

欢迎订阅

文章会同时发布到我的 博客园主页、CSDN主页、微信公众号 平台上。

微信搜索"痞子衡嵌入式"或者扫描下面二维码,就可以在手机上第一时间看了哦。

pzhMcu_qrcode_258x258.jpg

这篇关于痞子衡嵌入式:并行NAND接口标准(ONFI)及SLC Raw NAND简介的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/236388

相关文章

嵌入式QT开发:构建高效智能的嵌入式系统

摘要: 本文深入探讨了嵌入式 QT 相关的各个方面。从 QT 框架的基础架构和核心概念出发,详细阐述了其在嵌入式环境中的优势与特点。文中分析了嵌入式 QT 的开发环境搭建过程,包括交叉编译工具链的配置等关键步骤。进一步探讨了嵌入式 QT 的界面设计与开发,涵盖了从基本控件的使用到复杂界面布局的构建。同时也深入研究了信号与槽机制在嵌入式系统中的应用,以及嵌入式 QT 与硬件设备的交互,包括输入输出设

ASIO网络调试助手之一:简介

多年前,写过几篇《Boost.Asio C++网络编程》的学习文章,一直没机会实践。最近项目中用到了Asio,于是抽空写了个网络调试助手。 开发环境: Win10 Qt5.12.6 + Asio(standalone) + spdlog 支持协议: UDP + TCP Client + TCP Server 独立的Asio(http://www.think-async.com)只包含了头文件,不依

荣耀嵌入式面试题及参考答案

在项目中是否有使用过实时操作系统? 在我参与的项目中,有使用过实时操作系统。实时操作系统(RTOS)在对时间要求严格的应用场景中具有重要作用。我曾参与的一个工业自动化控制项目就采用了实时操作系统。在这个项目中,需要对多个传感器的数据进行实时采集和处理,并根据采集到的数据及时控制执行机构的动作。实时操作系统能够提供确定性的响应时间,确保关键任务在规定的时间内完成。 使用实时操作系统的

业务协同平台--简介

一、使用场景         1.多个系统统一在业务协同平台定义协同策略,由业务协同平台代替人工完成一系列的单据录入         2.同时业务协同平台将执行任务推送给pda、pad等执行终端,通知各人员、设备进行作业执行         3.作业过程中,可设置完成时间预警、作业节点通知,时刻了解作业进程         4.做完再给你做过程分析,给出优化建议         就问你这一套下

嵌入式Openharmony系统构建与启动详解

大家好,今天主要给大家分享一下,如何构建Openharmony子系统以及系统的启动过程分解。 第一:OpenHarmony系统构建      首先熟悉一下,构建系统是一种自动化处理工具的集合,通过将源代码文件进行一系列处理,最终生成和用户可以使用的目标文件。这里的目标文件包括静态链接库文件、动态链接库文件、可执行文件、脚本文件、配置文件等。      我们在编写hellowor

容器编排平台Kubernetes简介

目录 什么是K8s 为什么需要K8s 什么是容器(Contianer) K8s能做什么? K8s的架构原理  控制平面(Control plane)         kube-apiserver         etcd         kube-scheduler         kube-controller-manager         cloud-controlle

嵌入式方向的毕业生,找工作很迷茫

一个应届硕士生的问题: 虽然我明白想成为技术大牛需要日积月累的磨练,但我总感觉自己学习方法或者哪些方面有问题,时间一天天过去,自己也每天不停学习,但总感觉自己没有想象中那样进步,总感觉找不到一个很清晰的学习规划……眼看 9 月份就要参加秋招了,我想毕业了去大城市磨练几年,涨涨见识,拓开眼界多学点东西。但是感觉自己的实力还是很不够,内心慌得不行,总怕浪费了这人生唯一的校招机会,当然我也明白,毕业

【Tools】AutoML简介

摇来摇去摇碎点点的金黄 伸手牵来一片梦的霞光 南方的小巷推开多情的门窗 年轻和我们歌唱 摇来摇去摇着温柔的阳光 轻轻托起一件梦的衣裳 古老的都市每天都改变模样                      🎵 方芳《摇太阳》 AutoML(自动机器学习)是一种使用机器学习技术来自动化机器学习任务的方法。在大模型中的AutoML是指在大型数据集上使用自动化机器学习技术进行模型训练和优化。

深入探索嵌入式 Linux

摘要:本文深入探究嵌入式 Linux。首先回顾其发展历程,从早期尝试到克服诸多困难逐渐成熟。接着阐述其体系结构,涵盖硬件、内核、文件系统和应用层。开发环境方面包括交叉编译工具链、调试工具和集成开发环境。在应用领域,广泛应用于消费电子、工业控制、汽车电子和智能家居等领域。关键技术有内核裁剪与优化、设备驱动程序开发、实时性增强和电源管理等。最后展望其未来发展趋势,如与物联网融合、人工智能应用、安全性与

SaaS、PaaS、IaaS简介

云计算、云服务、云平台……现在“云”已成了一个家喻户晓的概念,但PaaS, IaaS 和SaaS的区别估计还没有那么多的人分得清,下面就分别向大家普及一下它们的基本概念: SaaS 软件即服务 SaaS是Software-as-a-Service的简称,意思是软件即服务。随着互联网技术的发展和应用软件的成熟, 在21世纪开始兴起的一种完全创新的软件应用模式。 它是一种通过Internet提供