(李航统计方法学习)朴素贝叶斯Python实现

2023-10-18 21:08

本文主要是介绍(李航统计方法学习)朴素贝叶斯Python实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

朴素贝叶斯属于生成模型,学习数据概率分布P(X,Y),然后求后验概率P(Y|X)。对条件概率分布作条件独立性假设。
模型:贝叶斯定理
策略:后验概率最大化(等价于期望风险最小化)
算法:略
朴素贝叶斯在进行概率估计时有两种方式:基于最大似然估计、基于贝叶斯估计。朴素贝叶斯可以进一步扩展成贝叶斯网络

import numpy as npdef Train(X_train,Y_train,feature):global  class_num,labelclass_num=2label=[1,-1]feature_len=3feature=[[1,'S'],[2,'M'],[3,'L']]prior_probability=np.zeros(class_num)conditional_probability=np.zeros((class_num,feature_len,2))pos,neg=0,0for i in range(len(Y_train)):if Y_train[i] == 1:pos+= 1else:neg += 1##计算出P(Y)prior_probability[0]=pos/len(X_train)prior_probability[1]=neg/len(X_train)##统计P(X1,X2|Y),假设X1与X2相互独立,计算P(X1,X2|Y)=P(X1|Y)*P(X2|Y),所以统计X1,X2不同取值对应的不同Y的数量for i in range(class_num):for j in range(feature_len):for k in range(len(Y_train)):if Y_train[k]==label[i]:if X_train[k][0]==feature[j][0]:conditional_probability[i][j][0]+=1if X_train[k][1]==feature[j][1]:conditional_probability[i][j][1]+=1class_label_num=[pos,neg]
##计算P(X1,X2|Y)for i in range(class_num):for j in range(feature_len):conditional_probability[i][j][0]/=class_label_num[i]conditional_probability[i][j][1]/=class_label_num[i]return  prior_probability,conditional_probabilitydef Predict(X_test,prior_probability,conditional_probability,feature):result=np.zeros(len(label))for i in range(class_num):fea0,fea1=0,0for j in range(len(feature)):if feature[j][0]==X_test[0]:fea0=conditional_probability[i][j][0]if feature[j][1]==X_test[1]:fea1=conditional_probability[i][j][1]result[i]=fea0*fea1*prior_probability[i]result=np.vstack([result,label])return result
def main():X_train=[[1, 'S'], [1, 'M'], [1, 'M'], [1, 'S'],  [1, 'S'],[2, 'S'], [2, 'M'], [2, 'M'], [2, 'L'],  [2, 'L'],[3, 'L'], [3, 'M'], [3, 'M'], [3, 'L'],  [3, 'L']]Y_train = [-1, -1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, -1]feature = [[1, 'S'],[2, 'M'],[3, 'L']]testset = [2, 'S']prior_probability, conditional_probability = Train(X_train, Y_train, feature)result = Predict(testset, prior_probability, conditional_probability, feature)print(result)if __name__ == '__main__':main()

这篇关于(李航统计方法学习)朴素贝叶斯Python实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/235142

相关文章

Python判断for循环最后一次的6种方法

《Python判断for循环最后一次的6种方法》在Python中,通常我们不会直接判断for循环是否正在执行最后一次迭代,因为Python的for循环是基于可迭代对象的,它不知道也不关心迭代的内部状态... 目录1.使用enuhttp://www.chinasem.cnmerate()和len()来判断for

C#提取PDF表单数据的实现流程

《C#提取PDF表单数据的实现流程》PDF表单是一种常见的数据收集工具,广泛应用于调查问卷、业务合同等场景,凭借出色的跨平台兼容性和标准化特点,PDF表单在各行各业中得到了广泛应用,本文将探讨如何使用... 目录引言使用工具C# 提取多个PDF表单域的数据C# 提取特定PDF表单域的数据引言PDF表单是一

使用Python实现高效的端口扫描器

《使用Python实现高效的端口扫描器》在网络安全领域,端口扫描是一项基本而重要的技能,通过端口扫描,可以发现目标主机上开放的服务和端口,这对于安全评估、渗透测试等有着不可忽视的作用,本文将介绍如何使... 目录1. 端口扫描的基本原理2. 使用python实现端口扫描2.1 安装必要的库2.2 编写端口扫

Java循环创建对象内存溢出的解决方法

《Java循环创建对象内存溢出的解决方法》在Java中,如果在循环中不当地创建大量对象而不及时释放内存,很容易导致内存溢出(OutOfMemoryError),所以本文给大家介绍了Java循环创建对象... 目录问题1. 解决方案2. 示例代码2.1 原始版本(可能导致内存溢出)2.2 修改后的版本问题在

PyCharm接入DeepSeek实现AI编程的操作流程

《PyCharm接入DeepSeek实现AI编程的操作流程》DeepSeek是一家专注于人工智能技术研发的公司,致力于开发高性能、低成本的AI模型,接下来,我们把DeepSeek接入到PyCharm中... 目录引言效果演示创建API key在PyCharm中下载Continue插件配置Continue引言

MySQL分表自动化创建的实现方案

《MySQL分表自动化创建的实现方案》在数据库应用场景中,随着数据量的不断增长,单表存储数据可能会面临性能瓶颈,例如查询、插入、更新等操作的效率会逐渐降低,分表是一种有效的优化策略,它将数据分散存储在... 目录一、项目目的二、实现过程(一)mysql 事件调度器结合存储过程方式1. 开启事件调度器2. 创

使用Python实现操作mongodb详解

《使用Python实现操作mongodb详解》这篇文章主要为大家详细介绍了使用Python实现操作mongodb的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、示例二、常用指令三、遇到的问题一、示例from pymongo import MongoClientf

SQL Server使用SELECT INTO实现表备份的代码示例

《SQLServer使用SELECTINTO实现表备份的代码示例》在数据库管理过程中,有时我们需要对表进行备份,以防数据丢失或修改错误,在SQLServer中,可以使用SELECTINT... 在数据库管理过程中,有时我们需要对表进行备份,以防数据丢失或修改错误。在 SQL Server 中,可以使用 SE

使用Python合并 Excel单元格指定行列或单元格范围

《使用Python合并Excel单元格指定行列或单元格范围》合并Excel单元格是Excel数据处理和表格设计中的一项常用操作,本文将介绍如何通过Python合并Excel中的指定行列或单... 目录python Excel库安装Python合并Excel 中的指定行Python合并Excel 中的指定列P

基于Go语言实现一个压测工具

《基于Go语言实现一个压测工具》这篇文章主要为大家详细介绍了基于Go语言实现一个简单的压测工具,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录整体架构通用数据处理模块Http请求响应数据处理Curl参数解析处理客户端模块Http客户端处理Grpc客户端处理Websocket客户端