07-Cadence17.4 allegro的artwork设定(输出gerber文件需要)

2023-10-18 20:10

本文主要是介绍07-Cadence17.4 allegro的artwork设定(输出gerber文件需要),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Cadence17.4 allegro的artwork设定

这里写目录标题

  • Cadence17.4 allegro的artwork设定
    • 1.artwork设置与选择
    • 2.注意

1.artwork设置与选择

打开artwork设置选项
在这里插入图片描述
此时软件会弹出“Arwtrok Control Form”对话框,如下,我这里是四层板的设计。
在这里插入图片描述
000层:我在画图时有个习惯就是多增加一个000层,目前是在layout时可以一键切换到想要的视图模式,但是在出gerber文件的时候不要勾选此选项就好。
在这里插入图片描述
在这里插入图片描述

TOP层:包括布线,引脚,过孔
在这里插入图片描述
GND层:包括布线,过孔
在这里插入图片描述
POWER层:包括布线,过孔
在这里插入图片描述
BOTTOM层:包括布线,引脚,过孔
在这里插入图片描述
DRILL:包括钻孔图和孔标号
在这里插入图片描述
SILK-TOP/SILK-BOT:顶层和底层的丝印
在这里插入图片描述
SOLDER-TOP/SOLDER-BOT:顶层和底层的阻焊层
在这里插入图片描述
PASTE-TOP/PASTE-BOT:顶层和底层的阻焊层
在这里插入图片描述
OUTLINE:边框层
在这里插入图片描述

2.注意

箭头所指的位置需要填写,否则gerber文件的丝印没有宽度。
在这里插入图片描述
当你在输出bottom层的丝印时,请注意将下图的√打上,否则时镜像的文件,在输出gerber文件时记得取消
在这里插入图片描述

这篇关于07-Cadence17.4 allegro的artwork设定(输出gerber文件需要)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/234895

相关文章

关于数据埋点,你需要了解这些基本知识

产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

业务中14个需要进行A/B测试的时刻[信息图]

在本指南中,我们将全面了解有关 A/B测试 的所有内容。 我们将介绍不同类型的A/B测试,如何有效地规划和启动测试,如何评估测试是否成功,您应该关注哪些指标,多年来我们发现的常见错误等等。 什么是A/B测试? A/B测试(有时称为“分割测试”)是一种实验类型,其中您创建两种或多种内容变体——如登录页面、电子邮件或广告——并将它们显示给不同的受众群体,以查看哪一种效果最好。 本质上,A/B测

顺序表之创建,判满,插入,输出

文章目录 🍊自我介绍🍊创建一个空的顺序表,为结构体在堆区分配空间🍊插入数据🍊输出数据🍊判断顺序表是否满了,满了返回值1,否则返回0🍊main函数 你的点赞评论就是对博主最大的鼓励 当然喜欢的小伙伴可以:点赞+关注+评论+收藏(一键四连)哦~ 🍊自我介绍   Hello,大家好,我是小珑也要变强(也是小珑),我是易编程·终身成长社群的一名“创始团队·嘉宾”

AI(文生语音)-TTS 技术线路探索学习:从拼接式参数化方法到Tacotron端到端输出

AI(文生语音)-TTS 技术线路探索学习:从拼接式参数化方法到Tacotron端到端输出 在数字化时代,文本到语音(Text-to-Speech, TTS)技术已成为人机交互的关键桥梁,无论是为视障人士提供辅助阅读,还是为智能助手注入声音的灵魂,TTS 技术都扮演着至关重要的角色。从最初的拼接式方法到参数化技术,再到现今的深度学习解决方案,TTS 技术经历了一段长足的进步。这篇文章将带您穿越时

如何将一个文件里不包含某个字符的行输出到另一个文件?

第一种: grep -v 'string' filename > newfilenamegrep -v 'string' filename >> newfilename 第二种: sed -n '/string/!'p filename > newfilenamesed -n '/string/!'p filename >> newfilename

Detectorn2预训练模型复现:数据准备、训练命令、日志分析与输出目录

Detectorn2预训练模型复现:数据准备、训练命令、日志分析与输出目录 在深度学习项目中,目标检测是一项重要的任务。本文将详细介绍如何使用Detectron2进行目标检测模型的复现训练,涵盖训练数据准备、训练命令、训练日志分析、训练指标以及训练输出目录的各个文件及其作用。特别地,我们将演示在训练过程中出现中断后,如何使用 resume 功能继续训练,并将我们复现的模型与Model Zoo中的

第六章习题11.输出以下图形

🌏个人博客:尹蓝锐的博客 希望文章能够给到初学的你一些启发~ 如果觉得文章对你有帮助的话,点赞 + 关注+ 收藏支持一下笔者吧~ 1、题目要求: 输出以下图形

LibSVM学习(五)——分界线的输出

对于学习SVM人来说,要判断SVM效果,以图形的方式输出的分解线是最直观的。LibSVM自带了一个可视化的程序svm-toy,用来输出类之间的分界线。他是先把样本文件载入,然后进行训练,通过对每个像素点的坐标进行判断,看属于哪一类,就附上那类的颜色,从而使类与类之间形成分割线。我们这一节不讨论svm-toy怎么使用,因为这个是“傻瓜”式的,没什么好讨论的。这一节我们主要探讨怎么结合训练结果文件

下载/保存/读取 文件,并转成流输出

最近对文件的操作又熟悉了下;现在记载下来:学习在于 坚持!!!不以细小而不为。 实现的是:文件的下载、文件的保存到SD卡、文件的读取输出String 类型、最后是文件转换成流输出;一整套够用了; 重点: 1:   操作网络要记得开线程; 2:更新网络获取的数据 切记用Handler机制; 3:注意代码的可读性(这里面只是保存到SD卡,在项目中切记要对SD卡的有无做判断,然后再获取路径!)

07 v-if和v-show使用和区别

划重点: v-ifv-show 小葱拌豆腐 <!DOCTYPE html><html lang="en"><head><meta charset="UTF-8"><meta name="viewport" content="width=device-width, initial-scale=1.0"><meta http-equiv="X-UA-Compatible" content="