【pytorch 中 torch.max 和 torch.argmax 的区别】

2023-10-18 17:36
文章标签 区别 pytorch torch max argmax

本文主要是介绍【pytorch 中 torch.max 和 torch.argmax 的区别】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

torch.max 和 torch.argmax 的区别

1.torch.max

torch.max(input, dim, max=None, max_indices=None, keepdim=False) -->> (Tensor, LongTensor)

作用:找出给定tensor的指定维度dim上的上的最大值,并返回最大值在该维度上的值和位置索引。
应用举例
例1——返回相应维度上的最大值,并返回最大值的位置索引

a = torch.randn(4, 4)
a
>tensor([[-1.2360, -0.2942, -0.1222,  0.8475],[ 1.1949, -1.1127, -2.2379, -0.6702],[ 1.5717, -0.9207,  0.1297, -1.8768],[-0.6172,  1.0036, -0.6060, -0.2432]])
torch.max(a, 1)
>torch.return_types.max(values=tensor([0.8475, 1.1949, 1.5717, 1.0036]), 
indices=tensor([3, 0, 0, 1]))

例2——如果max的参数只有一个tensor,则返回该tensor里所有值中的最大值。

a = torch.randn(4, 4)
a
>tensor([[ 0.4997,  0.8054,  0.1761,  0.3055],[-1.2234,  0.3823,  0.2266, -2.9062],[ 0.4390, -1.0142, -0.5314, -1.7095],[-0.2296, -0.4230, -0.7446, -0.0828]])
torch.max(a)
>tensor(0.8054)

例3——如果max的参数是两个相同shape的tensor,则返回两tensor元素对应位置的最大值的新tensor

a = torch.randint(2, 10,(6,4))
a
>tensor([[8, 7, 3, 5],[2, 8, 3, 4],[3, 2, 5, 5],[4, 7, 5, 2],[2, 9, 3, 8],[4, 4, 2, 2]])
b = torch.randint(2, 10,(6,4))
b
>tensor([[9, 8, 9, 2],[4, 3, 3, 4],[6, 9, 2, 7],[4, 3, 2, 7],[4, 4, 9, 2],[8, 2, 6, 2]])
torch.max(a, b) 
>tensor([[9, 8, 9, 5],[4, 8, 3, 4],[6, 9, 5, 7],[4, 7, 5, 7],[4, 9, 9, 8],[8, 4, 6, 2]])

2. torch.argmax

函数定义
torch.argmax(input, dim, keepdim=False) → LongTensor
作用:返回输入张量中指定维度的最大值的索引。
应用举例:
例1——指定维度:返回相应维度最大值的索引

a = torch.randn(4, 4)
a
>tensor([[ 1.3398,  0.2663, -0.2686,  0.2450],[-0.7401, -0.8805, -0.3402, -1.1936],[ 0.4907, -1.3948, -1.0691, -0.3132],[-1.6092,  0.5419, -0.2993,  0.3195]])
torch.argmax(a, dim=1)
>tensor([ 0,  2,  0,  1])

例2——不指定维度,返回整体上最大值的序号

a = torch.randint(9,(3, 3))
a
>tensor([[5, 2, 2],[7, 2, 0],[8, 0, 6]])
torch.argmax(a)
>tensor(6)

3.torch.min

用法同max

4.torch.argmin

用法同argmax

这篇关于【pytorch 中 torch.max 和 torch.argmax 的区别】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/234124

相关文章

Springboot @Autowired和@Resource的区别解析

《Springboot@Autowired和@Resource的区别解析》@Resource是JDK提供的注解,只是Spring在实现上提供了这个注解的功能支持,本文给大家介绍Springboot@... 目录【一】定义【1】@Autowired【2】@Resource【二】区别【1】包含的属性不同【2】@

Java中的String.valueOf()和toString()方法区别小结

《Java中的String.valueOf()和toString()方法区别小结》字符串操作是开发者日常编程任务中不可或缺的一部分,转换为字符串是一种常见需求,其中最常见的就是String.value... 目录String.valueOf()方法方法定义方法实现使用示例使用场景toString()方法方法

分辨率三兄弟LPI、DPI 和 PPI有什么区别? 搞清分辨率的那些事儿

《分辨率三兄弟LPI、DPI和PPI有什么区别?搞清分辨率的那些事儿》分辨率这个东西,真的是让人又爱又恨,为了搞清楚它,我可是翻阅了不少资料,最后发现“小7的背包”的解释最让我茅塞顿开,于是,我... 在谈到分辨率时,我们经常会遇到三个相似的缩写:PPI、DPI 和 LPI。虽然它们看起来差不多,但实际应用

GORM中Model和Table的区别及使用

《GORM中Model和Table的区别及使用》Model和Table是两种与数据库表交互的核心方法,但它们的用途和行为存在著差异,本文主要介绍了GORM中Model和Table的区别及使用,具有一... 目录1. Model 的作用与特点1.1 核心用途1.2 行为特点1.3 示例China编程代码2. Tab

Nginx指令add_header和proxy_set_header的区别及说明

《Nginx指令add_header和proxy_set_header的区别及说明》:本文主要介绍Nginx指令add_header和proxy_set_header的区别及说明,具有很好的参考价... 目录Nginx指令add_header和proxy_set_header区别如何理解反向代理?proxy

Java中&和&&以及|和||的区别、应用场景和代码示例

《Java中&和&&以及|和||的区别、应用场景和代码示例》:本文主要介绍Java中的逻辑运算符&、&&、|和||的区别,包括它们在布尔和整数类型上的应用,文中通过代码介绍的非常详细,需要的朋友可... 目录前言1. & 和 &&代码示例2. | 和 ||代码示例3. 为什么要使用 & 和 | 而不是总是使

使用PyTorch实现手写数字识别功能

《使用PyTorch实现手写数字识别功能》在人工智能的世界里,计算机视觉是最具魅力的领域之一,通过PyTorch这一强大的深度学习框架,我们将在经典的MNIST数据集上,见证一个神经网络从零开始学会识... 目录当计算机学会“看”数字搭建开发环境MNIST数据集解析1. 认识手写数字数据库2. 数据预处理的

C++中函数模板与类模板的简单使用及区别介绍

《C++中函数模板与类模板的简单使用及区别介绍》这篇文章介绍了C++中的模板机制,包括函数模板和类模板的概念、语法和实际应用,函数模板通过类型参数实现泛型操作,而类模板允许创建可处理多种数据类型的类,... 目录一、函数模板定义语法真实示例二、类模板三、关键区别四、注意事项 ‌在C++中,模板是实现泛型编程

Spring中@RestController和@Controller的使用及区别

《Spring中@RestController和@Controller的使用及区别》:本文主要介绍Spring中@RestController和@Controller的使用及区别,具有很好的参考价... 目录Spring中@RestController和@Controller使用及区别1. 基本定义2. 使

Pytorch微调BERT实现命名实体识别

《Pytorch微调BERT实现命名实体识别》命名实体识别(NER)是自然语言处理(NLP)中的一项关键任务,它涉及识别和分类文本中的关键实体,BERT是一种强大的语言表示模型,在各种NLP任务中显著... 目录环境准备加载预训练BERT模型准备数据集标记与对齐微调 BERT最后总结环境准备在继续之前,确