DeepAR代码详析(pytorch版)实现用电量预测

2023-10-18 16:30

本文主要是介绍DeepAR代码详析(pytorch版)实现用电量预测,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

DeepAR代码详析(pytorch版)实现用电量预测 – 潘登同学的RNN学习笔记

文章目录

    • DeepAR代码详析(pytorch版)实现用电量预测 -- 潘登同学的RNN学习笔记
  • 数据集说明
    • 数据预处理代码
  • 构造模型
    • Loss函数
    • 评估指标相关
  • utils工具类
  • 训练模型

前言: 上次用Amazon中的glount-ts框架做了一个deepar的股价预测,但是我感觉用的是人家的API,不太好,所以今天来搂一把pytorch的deepar,看看效果如何

数据集说明

数据集说明

  • 2011 ~2014期间;
  • 370 个 家庭的用电量;
  • 频率为 15分钟,但是取的时候是以一个小时为单位取的;

下载地址,下载好解压后放到./data/elect/目录下

超参数

  • 滑动窗口长度: 192 换算为天数为 192/24 = 8
  • 已知序列(上下文)长度: 168 换算为天数 168/24 = 7
  • 预测序列长度: 24 换算为天数 24/24 = 1

了解数据预处理之前,我们需要明确我们的输入与输出

  • 输入:上下文长度的协变量(covariates) X t X_t Xt与上一时刻的结果 Z t − 1 Z_{t-1} Zt1,加上一个指示向量(表示哪一户人家,one-hot形式)
  • 输出:这一时刻的结果 Z t Z_t Zt

训练集与测试集

  • 训练集的开始时间是: 2011-01-01 00:00:00
  • 训练集的结束时间是: 2014-08-31 23:00:00
  • 测试集的开始时间是: 2014-08-25 00:00:00 因为要有7天的上下文
  • 测试集的结束时间是: 2014-09-07 23:00:00

数据预处理的几个关键

  • 有些家庭可能在2011的时候没有入住或者没有开始使用,要将前面全零的这部分去掉
  • 该文是将数据的时间维度按照星期几、小时数(比如上午8:00)、月份当作了协变量
  • 对协变量做数据归一化的时候,是按照协变量级别来做的(将所有家庭,所有时间点的星期几这一变量放到一起做归一化),因为在这里协变量都是周而复始的,所有家庭都共用相同的协变量,所以对对所有时间点,所有家庭的协变量做归一化其实跟只将所有家庭的写变量分不同时间点做归一化是一样的;我认为在协变量不同的情况下,就比如股价预测,每个公司的四价一量都不一样,如果做归一化的话(当前时间点的四价一量与过去时间点的四价一量表达的含义一定不一样),应该对每个时间点做归一化;

在这里插入图片描述

数据预处理代码

建议先把数据下载下来,不然会很慢

在这里插入图片描述

构造模型

deepAR的模型本质上是一个RNN,RNN cell使用的是LSTM,只是在最后输出接了两个全连接层,一个是预测均值的,一个是预测标准差的(一开始我认为只要接一个就可以,最后输出两个神经元即可,后来发现标准差的那个要经过一个softplus激活函数,这个激活函数是relu的一个改进版本,最后接这个的目的也是为了保证标准差为正)

输入的时候,还将one-hot经过embedding层(这都是比较常规的操作啦)

在这里插入图片描述

Loss函数

Loss的构造比较容易理解,在论文中我都没太看懂loss,但是代码里面我看懂了;思路就是根据预测出来的均值与标准差重构一个正态分布,再计算对数似然(就是计算label在该分布下的对数概率),最小化负平均似然即可

在这里插入图片描述

评估指标相关

在这里插入图片描述

utils工具类

工具函数中写了很多params,画图,评估函数,保存模型等的工具类,总之复用性很高,可以借鉴,我这里也贴出来

在这里插入图片描述

训练模型

训练模型这个操作就比较常规了,不详细讲解了,这个的日志写的也不错,贴一下吧;然后test也在evaluate中被调用,所以就没必要另说test了,test的代码也在构造模型中,也比较简单,是一个decoder的过程

在这里插入图片描述

写在最后,该代码不是我写的,源码在github上获取,这里只是我的解读,不懂的可以跟我探讨,总的来说我认为这个pytorch的复现版本写的很优秀,如果想改的话,只需要改改数据预处理部分即可; 如果真的想用该源码做股价预测,就改数据预处理部分吧…

这篇关于DeepAR代码详析(pytorch版)实现用电量预测的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/233786

相关文章

Java实现检查多个时间段是否有重合

《Java实现检查多个时间段是否有重合》这篇文章主要为大家详细介绍了如何使用Java实现检查多个时间段是否有重合,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录流程概述步骤详解China编程步骤1:定义时间段类步骤2:添加时间段步骤3:检查时间段是否有重合步骤4:输出结果示例代码结语作

使用C++实现链表元素的反转

《使用C++实现链表元素的反转》反转链表是链表操作中一个经典的问题,也是面试中常见的考题,本文将从思路到实现一步步地讲解如何实现链表的反转,帮助初学者理解这一操作,我们将使用C++代码演示具体实现,同... 目录问题定义思路分析代码实现带头节点的链表代码讲解其他实现方式时间和空间复杂度分析总结问题定义给定

Java覆盖第三方jar包中的某一个类的实现方法

《Java覆盖第三方jar包中的某一个类的实现方法》在我们日常的开发中,经常需要使用第三方的jar包,有时候我们会发现第三方的jar包中的某一个类有问题,或者我们需要定制化修改其中的逻辑,那么应该如何... 目录一、需求描述二、示例描述三、操作步骤四、验证结果五、实现原理一、需求描述需求描述如下:需要在

如何使用Java实现请求deepseek

《如何使用Java实现请求deepseek》这篇文章主要为大家详细介绍了如何使用Java实现请求deepseek功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1.deepseek的api创建2.Java实现请求deepseek2.1 pom文件2.2 json转化文件2.2

Java调用DeepSeek API的最佳实践及详细代码示例

《Java调用DeepSeekAPI的最佳实践及详细代码示例》:本文主要介绍如何使用Java调用DeepSeekAPI,包括获取API密钥、添加HTTP客户端依赖、创建HTTP请求、处理响应、... 目录1. 获取API密钥2. 添加HTTP客户端依赖3. 创建HTTP请求4. 处理响应5. 错误处理6.

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

如何通过Python实现一个消息队列

《如何通过Python实现一个消息队列》这篇文章主要为大家详细介绍了如何通过Python实现一个简单的消息队列,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录如何通过 python 实现消息队列如何把 http 请求放在队列中执行1. 使用 queue.Queue 和 reque

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

使用Python快速实现链接转word文档

《使用Python快速实现链接转word文档》这篇文章主要为大家详细介绍了如何使用Python快速实现链接转word文档功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 演示代码展示from newspaper import Articlefrom docx import