DPM are CNNs学习

2023-10-18 08:50
文章标签 学习 cnns dpm

本文主要是介绍DPM are CNNs学习,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

转载自:http://blog.csdn.net/cv_family_z/article/details/49449565
Deformable Part Models are Convolutional Neural Networks
记录一下DPM are CNNS中的几个图及其含义(转载)

DeepPyramid DPMs
输入图像金字塔,输出目标检测得分金字塔,可描述为两个小的网络,一个特征金字塔“front-end”CNN和一个DPM-CNN,模型的原理图如下所示:
这里写图片描述

特征直方图front-end CNN
物体以不同的尺度出现在图像中,常用的技术是使用图像金字塔在多个尺度运行检测器,论文使用单尺度的CNN结构

DPM-CNN
DPM将物体以多”Components”模型化,每个”Components”负责不同的外形表示(如车辆侧视图,倒立的行人等),每个组件使用一个低分辨率的全局模型和几个高分辨率的“part filters”。
测试时,DPM以滑动窗方式在HOG特征金字塔上运行,每个金字塔通过优化得分函数(平衡deformation part costs 和 image match scores)分配一个DPM得分,得分函数的全局最大值通过临近位置的共享计算和动态规划算法得到。对于一个给定的DPM,将每步展开,得到一个具有固定深度的CNN网络,网络的结构如图2所示。

这里写图片描述

1.DPM-CNN输入是特征金字塔层(con5特征图)
2.将特征图与一个root filter和P个part filter卷积,得到P+1个特征图
3.part filter的P个特征图输入距离变换池化层
4.将P+1个特征图堆栈
5.将P+1个特征图与object geometry filter卷积,生成DPM得分图

距离变换池化
最大池化:Mf(p)=maxΔp∈−k,…,kf(p+Δp)
距离变换池化:Df(p)=maxq∈G(f(q)−d(p−q))
对于DPM,d(r)是凸二次函数d(r)=ar2+br,a,b是可学的参数,池化的区域可从数据中学到。

Object Geometry Filters
component c在位置s处的得分是root filter的得分和经过距离变化的part的得分之和,每个part相对于锚点的位移为vp=(vpx,vpy),计算组件在所有位置的得分可认为是卷积。将P+1个得分图与”object geometry”卷积,”object geometry filter”只有一个系数为1,其余都为0。”object geometry”第一个通道的左上角系数为1,令其筛选root的得分,通道p在位置vp处系数为1,筛选 part p的得分。

maxout 所有components的结果
使用zqc表示组件c在位置q的结果,所有组件的结果是最大化值:zq=maxczqc,在DPM-CNN中,zqc=wc⋅xq+bc,wc是组件c的object geometry滤波器,xq是位置q处root和part得分的子矩阵,bc是偏移量。下图是DPM-CNN的maxout结构:
这里写图片描述

训练方式
两种方式训练Deep Pyramid DPM:
Way1:将模型认为是一个CNN,使用SGD和BP进行端到端的训练。
Way2:分两步训练模型,Step1固定front-end CNN;(2)使用latent SVM在第一阶段后训练DPM,本文选用第二种方法。

这篇关于DPM are CNNs学习的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/231506

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识

线性代数|机器学习-P36在图中找聚类

文章目录 1. 常见图结构2. 谱聚类 感觉后面几节课的内容跨越太大,需要补充太多的知识点,教授讲得内容跨越较大,一般一节课的内容是书本上的一章节内容,所以看视频比较吃力,需要先预习课本内容后才能够很好的理解教授讲解的知识点。 1. 常见图结构 假设我们有如下图结构: Adjacency Matrix:行和列表示的是节点的位置,A[i,j]表示的第 i 个节点和第 j 个

Node.js学习记录(二)

目录 一、express 1、初识express 2、安装express 3、创建并启动web服务器 4、监听 GET&POST 请求、响应内容给客户端 5、获取URL中携带的查询参数 6、获取URL中动态参数 7、静态资源托管 二、工具nodemon 三、express路由 1、express中路由 2、路由的匹配 3、路由模块化 4、路由模块添加前缀 四、中间件