Linux之iostat溯源diskstats

2023-10-18 08:12
文章标签 linux 溯源 iostat diskstats

本文主要是介绍Linux之iostat溯源diskstats,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

iostat

    • 默认输出解析
    • 详细输出解析
    • 关键指标
  • diskstats
    • 字段解析
    • await的计算来源
      • 计算方法
    • svctm计算来源
      • 计算方法
    • util的计算来源
      • 计算方法

系统级别的IO工具

默认输出解析

iostat

在这里插入图片描述

  • %usr CPU在用户模式下的时间百分比
  • %nice CPU处在带NICE值的用户模式下的时间百分比
  • %system CPU在系统模式下的时间百分比
  • %iowait CPU等待输入输出完成时间的百分比
  • %steal 管理程序维护另一个虚拟处理器时,虚拟CPU的无意识等待时间百分比
  • %idle CPU空闲时间百分比
  • tps 该设备每秒的传输次数(Indicate the number of transfers per second that were issued to the device.)。“一次传输"意思是"一次I/O请求”。多个逻辑请求可能会被合并为"一次I/O请求"。"一次传输"请求的大小是未知的。
  • kB_read/s 每秒从设备读取的数据量
  • kB_wrtn/s 每秒向设备写入的数据量
  • kB_read 读取的总数据量
  • kB_wrtn 写入的总数据量

详细输出解析

iostat -x

在这里插入图片描述

  • rrqm/s : 每秒合并读操作的次数
  • wrqm/s: 每秒合并写操作的次数
  • r/s :每秒读操作的次数
  • w/s : 每秒写操作的次数
  • rMB/s :每秒读取的MB字节数
  • wMB/s: 每秒写入的MB字节数
  • avgrq-sz:每个IO的平均扇区数,即所有请求的平均大小,以扇区(512字节)为单位
  • avgqu-sz:平均为完成的IO请求数量,即平均意义上的请求队列长度
  • await:平均每个IO所需要的时间,包括在队列等待的时间,也包括磁盘控制器处理本次请求的有效时间。
    1. r_wait:每个读操作平均所需要的时间,不仅包括硬盘设备读操作的时间,也包括在内核队列中的时间。
    2. w_wait: 每个写操平均所需要的时间,不仅包括硬盘设备写操作的时间,也包括在队列中等待的时间。
  • svctm: 表面看是每个IO请求的服务时间,不包括等待时间,但是实际上,这个指标已经废弃,iostat工具没有任何一输出项表示的是硬盘设备平均每次IO的时间。
  • %util: 工作时间或者繁忙时间占总时间的百分比

关键指标

  1. avgqu-sz
    队列的长度,在一定程度上反应了繁忙程度
  2. avgrq-sz
    它的含义是说,平均下来一段时间内,所有请求的平均大小,单位是扇区,即(512字节)。avgrq-sz这个值反应了用户的IO-Pattern,反应过来的IO是大IO还是小IO,那么avgrq-sz反应了这个要素。
    假设avgrq-sz为8,即8个扇区 = 8*512(Byte) = 4KB,则可以反应IO大小
    但是总的大小受内核参数控制cat /sys/block/sdc/queue/max_sectors_kb
  3. r/s和w/s
    反应iops=r/s+w/s

diskstats

iostat的数据来源于内核提供的==/proc/diskstats==文件,该文件里面记录了系统中累计读写访问总数、IO访问总耗时等参数(也会在文件 /sys/block/<disk_name>/stat 中记录单个磁盘的统计信息)。

字段解析

在这里插入图片描述
每一列的含义如下:

  1. major:主设备号 — 不同类别设备编号不一样,虚拟磁盘统一为253,磁盘统一为8,环回设备统一为7
  2. minor:次设备号
  3. dev_name:磁盘名
  4. rd_ios:读完成总次数 — 不包含5列中的合并读取次数
  5. rd_merges:读取合并次数 — 如果两个读操作读取相邻的数据块时,可以被合并成一个,以提高效率。
  6. rd_sectors:读取的扇区总数 — 单个扇区 512B
  7. rd_ticks:读请求的总耗时 (ms) — 每个读操作从__make_request()开始计时,到end_that_request_last()为止,包括了在队列中等待的时间。
  8. wr_ios:写完成总次数
  9. wr_merges:写合并次数
  10. wr_sectors:写的扇区总数
  11. wr_ticks:写请求总耗时 (ms) — 包含在队列中等待时间
  12. in_flight:当前未完成的I/O数量。在I/O请求进入队列时该值加1,在I/O结束时该值减1。
    注意:是I/O请求进入 plug 队列时,而不是提交给硬盘设备时。流程为 I/o-> plug -> elevator -> driver
  13. io_ticks(tot_ticks):该设备用于处理I/O的自然时间。
    请注意io_ticks与rd_ticks(字段7)和wr_ticks(字段11)的区别,rd_ticks和wr_ticks是把每一个I/O所消耗的时间累加在一起。而io_ticks表示该设备有I/O(即非空闲)的时间,不考虑I/O有多少,只考虑当前有没有I/O。因为硬盘设备通常可以并行处理多个I/O,所以rd_ticks和wr_ticks往往会比自然时间大。在实际计算时,字段12(in_flight)不为零的时候io_ticks保持计时,字段12(in_flight)为零的时候io_ticks停止计时。
  14. time_in_queue: 对字段13(io_ticks)的加权值(ms)。
    字段13(io_ticks)是自然时间,但不考虑当前有几个I/O正在被处理,而time_in_queue是用当前的I/O数量(即字段12 in-flight)乘以自然时间(比如时间点1有一个I/O,时间点2有两个I/O, 那么 io_ticks = 1 + 1,而 time_in_queue=1+2,因为时间点2有两个 I/O)。虽然该字段的名称是time_in_queue,但并不真的只是在队列中的时间,其中还包含了硬盘处理I/O的时间。iostat在计算avgqu-sz时会用到这个字段。

通过上面的这些统计信息,我们可以大致计算出磁盘的单次 I/O 耗时,但是由于 /proc/diskstats 中没统计在磁盘上的实际耗时,所以我们无法计算出 I/O 在磁盘上的准确处理时间

await的计算来源

单次I/O的平均耗时(ms),包含在队列中的耗时和磁盘处理耗时

计算方法

间隔时间内 读写请求总耗时/读写总次数
#new 指这次获取 /proc/diskstats 的值, old 指上次获取 /proc/diskstats 的值
await =((new.rd_ticks - old.rd_ticks) + (new.wr_ticks - old.wr_ticks)) / (new.rd_ios + new.wr_ios - old.rd_ios-old.wr

svctm计算来源

单次I/O的服务时间(ms), 不包括等待时间

计算方法

间隔时间内 所有的io服务时间/io请求次数
svc_t=(new.io_ticks-old.io_ticks)/(new.rd_ios + new.wr_ios - old.rd_ios-old.wr_ios)
注意

  • svctm 是根据一段时间内有IO访问的时间累加和除以这段时间内的IO访问次数。但是这个结果并不能简单地表示单次 I/O 时间, 比如当磁盘能并行处理请求时, 10个请求从开始处理到处理结束花费时间为10ms, 那么 io_ticks 统计的耗时是 10ms, 根据上面公式来算,单次 I/O 耗时为1ms,实际上每个请求可能都花费了10ms。
    但是对于 sata hdd 盘我们可以用 svctm 来简单地表示单次磁盘耗时, 对于nvme 我们不能用 svctm 表示单次 I/O 耗时。

util的计算来源

磁盘使用时间百分比

计算方法

#itv 表示两次统计之间的时间间隔
util = (new.tot_ticks - old.tot_ticks)/ itv
注意
如果磁盘可以并行,那么虽然 util显示达到100%, 磁盘吞吐可能还未达到上限。

这篇关于Linux之iostat溯源diskstats的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/231329

相关文章

linux-基础知识3

打包和压缩 zip 安装zip软件包 yum -y install zip unzip 压缩打包命令: zip -q -r -d -u 压缩包文件名 目录和文件名列表 -q:不显示命令执行过程-r:递归处理,打包各级子目录和文件-u:把文件增加/替换到压缩包中-d:从压缩包中删除指定的文件 解压:unzip 压缩包名 打包文件 把压缩包从服务器下载到本地 把压缩包上传到服务器(zip

Linux 网络编程 --- 应用层

一、自定义协议和序列化反序列化 代码: 序列化反序列化实现网络版本计算器 二、HTTP协议 1、谈两个简单的预备知识 https://www.baidu.com/ --- 域名 --- 域名解析 --- IP地址 http的端口号为80端口,https的端口号为443 url为统一资源定位符。CSDNhttps://mp.csdn.net/mp_blog/creation/editor

【Python编程】Linux创建虚拟环境并配置与notebook相连接

1.创建 使用 venv 创建虚拟环境。例如,在当前目录下创建一个名为 myenv 的虚拟环境: python3 -m venv myenv 2.激活 激活虚拟环境使其成为当前终端会话的活动环境。运行: source myenv/bin/activate 3.与notebook连接 在虚拟环境中,使用 pip 安装 Jupyter 和 ipykernel: pip instal

Linux_kernel驱动开发11

一、改回nfs方式挂载根文件系统         在产品将要上线之前,需要制作不同类型格式的根文件系统         在产品研发阶段,我们还是需要使用nfs的方式挂载根文件系统         优点:可以直接在上位机中修改文件系统内容,延长EMMC的寿命         【1】重启上位机nfs服务         sudo service nfs-kernel-server resta

【Linux 从基础到进阶】Ansible自动化运维工具使用

Ansible自动化运维工具使用 Ansible 是一款开源的自动化运维工具,采用无代理架构(agentless),基于 SSH 连接进行管理,具有简单易用、灵活强大、可扩展性高等特点。它广泛用于服务器管理、应用部署、配置管理等任务。本文将介绍 Ansible 的安装、基本使用方法及一些实际运维场景中的应用,旨在帮助运维人员快速上手并熟练运用 Ansible。 1. Ansible的核心概念

Linux服务器Java启动脚本

Linux服务器Java启动脚本 1、初版2、优化版本3、常用脚本仓库 本文章介绍了如何在Linux服务器上执行Java并启动jar包, 通常我们会使用nohup直接启动,但是还是需要手动停止然后再次启动, 那如何更优雅的在服务器上启动jar包呢,让我们一起探讨一下吧。 1、初版 第一个版本是常用的做法,直接使用nohup后台启动jar包, 并将日志输出到当前文件夹n

[Linux]:进程(下)

✨✨ 欢迎大家来到贝蒂大讲堂✨✨ 🎈🎈养成好习惯,先赞后看哦~🎈🎈 所属专栏:Linux学习 贝蒂的主页:Betty’s blog 1. 进程终止 1.1 进程退出的场景 进程退出只有以下三种情况: 代码运行完毕,结果正确。代码运行完毕,结果不正确。代码异常终止(进程崩溃)。 1.2 进程退出码 在编程中,我们通常认为main函数是代码的入口,但实际上它只是用户级

【Linux】应用层http协议

一、HTTP协议 1.1 简要介绍一下HTTP        我们在网络的应用层中可以自己定义协议,但是,已经有大佬定义了一些现成的,非常好用的应用层协议,供我们直接使用,HTTP(超文本传输协议)就是其中之一。        在互联网世界中,HTTP(超文本传输协议)是一个至关重要的协议,他定义了客户端(如浏览器)与服务器之间如何进行通信,以交换或者传输超文本(比如HTML文档)。

如何编写Linux PCIe设备驱动器 之二

如何编写Linux PCIe设备驱动器 之二 功能(capability)集功能(capability)APIs通过pci_bus_read_config完成功能存取功能APIs参数pos常量值PCI功能结构 PCI功能IDMSI功能电源功率管理功能 功能(capability)集 功能(capability)APIs int pcie_capability_read_wo