ImageDataGenerator使用

2023-10-18 06:58
文章标签 使用 imagedatagenerator

本文主要是介绍ImageDataGenerator使用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

最近发现了一个好用的类ImageDataGenerator,可以使用它完成以下工作:

  1. Accepting a batch of images used for training.
  2. Taking this batch and applying a series of random transformations to each image in the batch (including random rotation, resizing, shearing, etc.).
  3. Replacing the original batch with the new, randomly transformed batch.
  4. Training the CNN on this randomly transformed batch (i.e., the original data itself is not used for training).

简单的说就是可以使用它读入一批图片,它会根据我们设置的属性值自动的进行图像增强(如旋转,水平翻转,截取等),方便我们克服过拟合,学习到更多的特征。

使用前我们需要对ImageDataGenerator进行初始化:

#Updated to do image augmentation
train_datagen = ImageDataGenerator(rotation_range=40,   width_shift_range=0.2,height_shift_range=0.2,shear_range=0.2,zoom_range=0.2,horizontal_flip=True,fill_mode='nearest')
  • rotation_range is a value in degrees (0–180), a range within which to randomly rotate pictures.
  • width_shift and height_shift are ranges (as a fraction of total width or height) within which to randomly translate pictures vertically or horizontally.
  • shear_range is for randomly applying shearing transformations.
  • zoom_range is for randomly zooming inside pictures.
  • horizontal_flip is for randomly flipping half of the images horizontally. This is relevant when there are no assumptions of horizontal assymmetry (e.g. real-world pictures).
  • fill_mode is the strategy used for filling in newly created pixels, which can appear after a rotation or a width/height shift.

关于ImageDataGenerator的更多属性可以查看keras文档


接下来就可以用ImageDataGenerator读入图片了:

# Flow training images in batches of 20 using train_datagen generator
train_generator = train_datagen.flow_from_directory(train_dir,  # This is the source directory for training imagestarget_size=(150, 150),  # All images will be resized to 150x150batch_size=20,# Since we use binary_crossentropy loss, we need binary labelsclass_mode='binary')history = model.fit(train_generator,steps_per_epoch=100,  # 2000 images = batch_size * stepsepochs=100,verbose=2)

使用ImageDataGeneratorflow_from_directory方法读入图片时有个非常“神奇”的一点,ImageDataGenerator会自动帮我们的图片进行分类!这里的train_dir的目录结构如下:
在这里插入图片描述
那么ImageDataGenerator会自动帮我们将图片1,2,3.jpg分为cat类,4,5,6分为dog类。

target_size参数会将读入图片转为指定大小,我们这里是resize成150*150像素大小。

然后我们训练时就直接传train_generator即可,连y标签都不用传,非常方便。

Reference

  1. https://www.pyimagesearch.com/2019/07/08/keras-imagedatagenerator-and-data-augmentation/
  2. 吴恩达的课程练习

这篇关于ImageDataGenerator使用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/230950

相关文章

一文详解如何使用Java获取PDF页面信息

《一文详解如何使用Java获取PDF页面信息》了解PDF页面属性是我们在处理文档、内容提取、打印设置或页面重组等任务时不可或缺的一环,下面我们就来看看如何使用Java语言获取这些信息吧... 目录引言一、安装和引入PDF处理库引入依赖二、获取 PDF 页数三、获取页面尺寸(宽高)四、获取页面旋转角度五、判断

C++中assign函数的使用

《C++中assign函数的使用》在C++标准模板库中,std::list等容器都提供了assign成员函数,它比操作符更灵活,支持多种初始化方式,下面就来介绍一下assign的用法,具有一定的参考价... 目录​1.assign的基本功能​​语法​2. 具体用法示例​​​(1) 填充n个相同值​​(2)

Spring StateMachine实现状态机使用示例详解

《SpringStateMachine实现状态机使用示例详解》本文介绍SpringStateMachine实现状态机的步骤,包括依赖导入、枚举定义、状态转移规则配置、上下文管理及服务调用示例,重点解... 目录什么是状态机使用示例什么是状态机状态机是计算机科学中的​​核心建模工具​​,用于描述对象在其生命

使用Python删除Excel中的行列和单元格示例详解

《使用Python删除Excel中的行列和单元格示例详解》在处理Excel数据时,删除不需要的行、列或单元格是一项常见且必要的操作,本文将使用Python脚本实现对Excel表格的高效自动化处理,感兴... 目录开发环境准备使用 python 删除 Excphpel 表格中的行删除特定行删除空白行删除含指定

深入理解Go语言中二维切片的使用

《深入理解Go语言中二维切片的使用》本文深入讲解了Go语言中二维切片的概念与应用,用于表示矩阵、表格等二维数据结构,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起学习学习吧... 目录引言二维切片的基本概念定义创建二维切片二维切片的操作访问元素修改元素遍历二维切片二维切片的动态调整追加行动态

prometheus如何使用pushgateway监控网路丢包

《prometheus如何使用pushgateway监控网路丢包》:本文主要介绍prometheus如何使用pushgateway监控网路丢包问题,具有很好的参考价值,希望对大家有所帮助,如有错误... 目录监控网路丢包脚本数据图表总结监控网路丢包脚本[root@gtcq-gt-monitor-prome

Python通用唯一标识符模块uuid使用案例详解

《Python通用唯一标识符模块uuid使用案例详解》Pythonuuid模块用于生成128位全局唯一标识符,支持UUID1-5版本,适用于分布式系统、数据库主键等场景,需注意隐私、碰撞概率及存储优... 目录简介核心功能1. UUID版本2. UUID属性3. 命名空间使用场景1. 生成唯一标识符2. 数

SpringBoot中如何使用Assert进行断言校验

《SpringBoot中如何使用Assert进行断言校验》Java提供了内置的assert机制,而Spring框架也提供了更强大的Assert工具类来帮助开发者进行参数校验和状态检查,下... 目录前言一、Java 原生assert简介1.1 使用方式1.2 示例代码1.3 优缺点分析二、Spring Fr

Android kotlin中 Channel 和 Flow 的区别和选择使用场景分析

《Androidkotlin中Channel和Flow的区别和选择使用场景分析》Kotlin协程中,Flow是冷数据流,按需触发,适合响应式数据处理;Channel是热数据流,持续发送,支持... 目录一、基本概念界定FlowChannel二、核心特性对比数据生产触发条件生产与消费的关系背压处理机制生命周期

java使用protobuf-maven-plugin的插件编译proto文件详解

《java使用protobuf-maven-plugin的插件编译proto文件详解》:本文主要介绍java使用protobuf-maven-plugin的插件编译proto文件,具有很好的参考价... 目录protobuf文件作为数据传输和存储的协议主要介绍在Java使用maven编译proto文件的插件