本文主要是介绍【阅读具体数学笔记】递归分类下的约瑟夫问题将递归式转化为封闭式,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
本书中的约瑟夫问题定义如下:从围成标有记号1到n的圆圈的n个人开始,每隔一个删去一个人,知道只有一个人幸存下来。
下图是n=10的起始图形:
削去的顺序为2,4,6,8,10,3,7,1,9,于是最后有5幸存下来。问题是对总人数为n时,幸存者的号码J(n)是多少?
首先面对这个问题的时候,由于题目数据比较少,我们会来时一步一步的推导,第一次循环的时候,从2开始削去了环中的所有偶数,所以我们知道了最后题目的结果肯定是一个奇数。随着一轮一轮的循环删除在环中的数据规模不断缩小,所以我们把它抽象成如下形式:
我们假设一开始有2n个人,经过第一轮消除所有偶数之后编程如下形式:
下一个离开的就是3号(因为上一个删除了2n),对比开始没有进行删除的情况我们可以知道,按顺序删除的每个数据变成了之前的数据加倍再减去一,就是说
J(2n)=2J(n)-1,n>=1.
下面再来考虑对于奇数的情形,对于2n+1个人,标号为1的人恰好在标号为2n的人之后被删除,我们类比2n的情形可以得到
J(2n+1)=2J(n)+1,n>=1.
将以上的方程和J(1)=1组合起来就可以得到在所有情形下定义J的递归式:
J(1)=1.
J(2n)=2J(n)-1,n>=1.
J(2n+1)=2J(n)+1,n>=1.
为了能够在有限次运算内求得指定的J(n),我们来将递归式求得封闭形式:
对一个递归式,发现规律的最好方法就是将数据打表
我们发现表中的数据以2的幂将表分组(1,2,4,8…),并且每一组中的数据都是在递增2。所以我们可以讲n表示成n=2^m+l,m是使2^m不超过n的最大幂次,l表示在每一个分组中所占的位置,此时的递归式的解可以表示为
J(2^m +l)=2*l+1,m>=0,0<=l<2^m.
下面给出上式的证明,我们对m使用归纳法:当m=0时必定有l=0,所以上式的基础就是J(1)=1,此结论为真。归纳证明分为l是偶数还是奇数,如果m>0并且2^m+l=2n,那么l是偶数,那么根据归纳假设有:
J(2^m+l)=2J(2^(m-1)+l/2)-1=2l+1.
这就是我们想要的结果。当2^m=2n+1为奇数,我们同样有类似的证明成立。
我将在下一篇文章中给出文中递推式的推广,这些探讨将会解释所有这类问题背后的隐藏结构。
这篇关于【阅读具体数学笔记】递归分类下的约瑟夫问题将递归式转化为封闭式的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!