3500/15 106M1079-01 支持先进和复杂的人工智能计算

2023-10-16 23:12

本文主要是介绍3500/15 106M1079-01 支持先进和复杂的人工智能计算,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

3500/15 106M1079-01 支持先进和复杂的人工智能计算

耐能NPU IP系列允许ResNet、YOLO和其他深度学习网络在离线环境下的边缘设备上运行。耐能NPU IP为edge AI提供完整的硬件解决方案,包括硬件IP、编译器、模型压缩。它支持各种类型的卷积神经网络(CNN)模型,如Resnet-18、Resnet-34、Vgg16、GoogleNet和leNet,以及主流的深度学习框架,包括Caffe、Keras和TensorFlow。

耐能NPU IP系列功耗在0.5W以下,KDP 300版本功耗不到5mW。整个产品线的能效高于1.5 TOPS/W(注2)。通过采用滤波分解技术,可以将一个大规模的卷积计算块分割成若干个较小的卷积计算块进行并行计算。与可重构卷积加速技术一起,来自小块的计算结果将被整合,以实现更好的整体计算性能。通过耐能的模型压缩技术,未优化模型的尺寸可以缩小几十倍。

此外,耐能NPU可以与耐能的视觉识别软件相结合,为实时识别分析和响应提供解决方案。

KDP 300通过3D结构光和双镜头相机的图像分析支持3D实时面部识别。KDP 300也适用于要求超低功耗的边缘设备。包括计算和SRAM(静态随机存取存储器)在内的功率小于5mW。

KDP 500可以对海量人脸、手和身体姿势进行实时识别、分析和深度学习,非常适合智能家居和智能监控领域的应用。它的计算能力高达152 GOPS (500MHz)(每秒十亿次运算),同时保持100mW的功耗。

KDP 700支持更先进和复杂的人工智能计算,以及高端智能手机、机器人、无人机和智能监控设备的深度学习推理。它目前正处于开发阶段,预计将提供卓越的计算能力,峰值吞吐量可达4.4 TOPS(1GHz)(每秒万亿次运算),同时功耗保持在300~500mW。

注1:测量条件:CNN切片尺寸150x150,CNN帧率5fps,主频20Mhz。注2:能效因半导体工艺而异。在40 nm工艺下,耐能NPU的能效可以达到1.5TOPS/W以上  

51308351-175
51101318-900
TC-FXX101
51107404-100
PFS-778-D-5/1
10001/1/1
620-2030
FTA-T-08
SDS-C2-D2CM-1
620-2033
620-0090
51309150-225
620-0038C
51304516-250
51201557-100
51400159-HDW
621-1100RC
10205/1/1
10213/2/3
621-0010-AR
621-3580RC
51304441-200
10212/1/1
10201/1/1
10101/2/3
51199932-200
FC-TPSU-2430
51304446-150
TC-IOLI01

这篇关于3500/15 106M1079-01 支持先进和复杂的人工智能计算的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/221383

相关文章

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

这15个Vue指令,让你的项目开发爽到爆

1. V-Hotkey 仓库地址: github.com/Dafrok/v-ho… Demo: 戳这里 https://dafrok.github.io/v-hotkey 安装: npm install --save v-hotkey 这个指令可以给组件绑定一个或多个快捷键。你想要通过按下 Escape 键后隐藏某个组件,按住 Control 和回车键再显示它吗?小菜一碟: <template

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

hdu 2602 and poj 3624(01背包)

01背包的模板题。 hdu2602代码: #include<stdio.h>#include<string.h>const int MaxN = 1001;int max(int a, int b){return a > b ? a : b;}int w[MaxN];int v[MaxN];int dp[MaxN];int main(){int T;int N, V;s

poj 1113 凸包+简单几何计算

题意: 给N个平面上的点,现在要在离点外L米处建城墙,使得城墙把所有点都包含进去且城墙的长度最短。 解析: 韬哥出的某次训练赛上A出的第一道计算几何,算是大水题吧。 用convexhull算法把凸包求出来,然后加加减减就A了。 计算见下图: 好久没玩画图了啊好开心。 代码: #include <iostream>#include <cstdio>#inclu

uva 1342 欧拉定理(计算几何模板)

题意: 给几个点,把这几个点用直线连起来,求这些直线把平面分成了几个。 解析: 欧拉定理: 顶点数 + 面数 - 边数= 2。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstring>#include <cmath>#inc

uva 11178 计算集合模板题

题意: 求三角形行三个角三等分点射线交出的内三角形坐标。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstring>#include <cmath>#include <stack>#include <vector>#include <

XTU 1237 计算几何

题面: Magic Triangle Problem Description: Huangriq is a respectful acmer in ACM team of XTU because he brought the best place in regional contest in history of XTU. Huangriq works in a big compa

集中式版本控制与分布式版本控制——Git 学习笔记01

什么是版本控制 如果你用 Microsoft Word 写过东西,那你八成会有这样的经历: 想删除一段文字,又怕将来这段文字有用,怎么办呢?有一个办法,先把当前文件“另存为”一个文件,然后继续改,改到某个程度,再“另存为”一个文件。就这样改着、存着……最后你的 Word 文档变成了这样: 过了几天,你想找回被删除的文字,但是已经记不清保存在哪个文件了,只能挨个去找。真麻烦,眼睛都花了。看

音视频入门基础:WAV专题(10)——FFmpeg源码中计算WAV音频文件每个packet的pts、dts的实现

一、引言 从文章《音视频入门基础:WAV专题(6)——通过FFprobe显示WAV音频文件每个数据包的信息》中我们可以知道,通过FFprobe命令可以打印WAV音频文件每个packet(也称为数据包或多媒体包)的信息,这些信息包含该packet的pts、dts: 打印出来的“pts”实际是AVPacket结构体中的成员变量pts,是以AVStream->time_base为单位的显