LeetCode 462. 最小操作次数使数组元素相等 II【贪心,排序或快速选择】中等

本文主要是介绍LeetCode 462. 最小操作次数使数组元素相等 II【贪心,排序或快速选择】中等,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文属于「征服LeetCode」系列文章之一,这一系列正式开始于2021/08/12。由于LeetCode上部分题目有锁,本系列将至少持续到刷完所有无锁题之日为止;由于LeetCode还在不断地创建新题,本系列的终止日期可能是永远。在这一系列刷题文章中,我不仅会讲解多种解题思路及其优化,还会用多种编程语言实现题解,涉及到通用解法时更将归纳总结出相应的算法模板。

为了方便在PC上运行调试、分享代码文件,我还建立了相关的仓库:https://github.com/memcpy0/LeetCode-Conquest。在这一仓库中,你不仅可以看到LeetCode原题链接、题解代码、题解文章链接、同类题目归纳、通用解法总结等,还可以看到原题出现频率和相关企业等重要信息。如果有其他优选题解,还可以一同分享给他人。

由于本系列文章的内容随时可能发生更新变动,欢迎关注和收藏征服LeetCode系列文章目录一文以作备忘。

给你一个长度为 n 的整数数组 nums ,返回使所有数组元素相等需要的最小操作数。

在一次操作中,你可以使数组中的一个元素加 1 或者减 1

示例 1:

输入:nums = [1,2,3]
输出:2
解释:
只需要两次操作(每次操作指南使一个元素加 1 或减 1):
[1,2,3]  =>  [2,2,3]  =>  [2,2,2]

示例 2:

输入:nums = [1,10,2,9]
输出:16

提示:

  • n == nums.length
  • 1 <= nums.length <= 10^5
  • -10^9 <= nums[i] <= 10^9

题目集合:

  • 453. 最小操作次数使数组元素相等
  • 456. 最小操作次数使数组元素相等 II
  • 2448. 使数组相等的最小开销

解法1 数学+排序

每次可以将一个数加一或者减一,使得所有数组元素相等。凭借直觉可知,将所有数组元素向中间靠拢,所需要的操作次数最少。下面进行证明。

假设数组元素都变成 x x x 时,所需的移动数最少,那么 x x x 需要满足什么性质呢?

为了简化讨论,我们先假定数组长度 n n n 是偶数。我们将数组 nums \textit{nums} nums 从小到大进行排序,然后将数组进行首尾配对,从而划分为多个数对,并将这些数对组成区间 [ nums 0 , nums n − 1 ] , [ nums 1 , nums n − 2 ] , . . . , [ nums n 2 − 1 , nums n 2 ] [\textit{nums}_0, \textit{nums}_{n-1}], [\textit{nums}_1, \textit{nums}_{n-2}], ...,[\textit{nums}_{\frac{n}{2} - 1}, \textit{nums}_{\frac{n}{2}}] [nums0,numsn1],[nums1,numsn2],...,[nums2n1,nums2n]
结论: x x x 同时位于以上区间内时,所需的移动数最少,总移动数为 ∑ i = 0 n 2 − 1 ( nums n − 1 − i − nums i ) \sum_{i=0}^{\frac{n}{2} - 1} (\textit{nums}_{n-1-i} - \textit{nums}_i) i=02n1(numsn1inumsi)

证明:对于某一个区间 [ nums i , nums n − 1 − i ] [\textit{nums}_i, \textit{nums}_{n - 1 -i}] [numsi,numsn1i] ,元素变为 x x x该区间对应的数对所需要的移动数为 ∣ nums n − 1 − i − x ∣ + ∣ nums i − x ∣ ≥ ∣ nums n − 1 − i − x − ( nums i − x ) ∣ = nums n − 1 − i − nums i |\textit{nums}_{n - 1 - i} - x| + |\textit{nums}_i - x| \ge |\textit{nums}_{n - 1 - i} - x - (\textit{nums}_i - x)| = \textit{nums}_{n - 1 - i} - \textit{nums}_i numsn1ix+numsixnumsn1ix(numsix)=numsn1inumsi ,当且仅当 x ∈ [ nums i , nums n − 1 − i ] x\in [\textit{nums}_i, \textit{nums}_{n - 1 -i}] x[numsi,numsn1i]等号成立

在上述区间中,后一个区间是前一个区间的子集,因此只要 x ∈ [ nums n 2 − 1 , nums n 2 ] x \in [\textit{nums}_{\frac{n}{2} - 1}, \textit{nums}_{\frac{n}{2}}] x[nums2n1,nums2n] 就满足要求。

n n n 为奇数时,我们将排序后的数组中间的元素 nums ⌊ n 2 ⌋ \textit{nums}_{\lfloor \frac{n}{2} \rfloor} nums2n 当成区间 [ nums ⌊ n 2 ⌋ , nums ⌊ n 2 ⌋ ] [\textit{nums}_{\lfloor \frac{n}{2} \rfloor}, \textit{nums}_{\lfloor \frac{n}{2} \rfloor}] [nums2n,nums2n] 看待,则 x ∈ [ nums ⌊ n 2 ⌋ , nums ⌊ n 2 ⌋ ] x \in [\textit{nums}_{\lfloor \frac{n}{2} \rfloor}, \textit{nums}_{\lfloor \frac{n}{2} \rfloor}] x[nums2n,nums2n] x = nums ⌊ n 2 ⌋ x= \textit{nums}_{\lfloor \frac{n}{2} \rfloor} x=nums2n 时,所需的移动数最少。

综上所述,所有元素都变成 nums ⌊ n 2 ⌋ \textit{nums}_{\lfloor \frac{n}{2} \rfloor} nums2n 时,所需的移动数最少。

class Solution {
public:int minMoves2(vector<int>& nums) {sort(nums.begin(), nums.end());int n = nums.size(), ans = 0, x = nums[n / 2];for (int i = 0; i < n; ++i) ans += abs(nums[i] - x);// int i = 0, j = nums.size() - 1, ans = 0;// while (i < j) ans += nums[j--] + nums[i++];return ans;}
};

复杂度分析:

  • 时间复杂度: O ( n log ⁡ n ) O(n\log n) O(nlogn),其中 n n n 是数组 nums \textit{nums} nums 的长度。排序需要 O ( n log ⁡ n ) O(n\log n) O(nlogn) 的时间。
  • 空间复杂度: O ( log ⁡ n ) O(\log n) O(logn) 。排序需要 O ( log ⁡ n ) O(\log n) O(logn) 的递归栈空间。

解法2 快速选择

根据方法一的推导, x x x 取数组 nums \textit{nums} nums ⌊ n 2 ⌋ \lfloor \frac{n}{2} \rfloor 2n 小元素(从 0 0 0 开始计数)时,所需要的移动数最少。求解数组第 k k k 小元素可以使用快速选择算法。

class Solution {
public:int quickSelect(vector<int>& nums, int left, int right, int index) {int q = randomPartition(nums, left, right);if (q == index) {return nums[q];} else {return q < index ? quickSelect(nums, q + 1, right, index) : quickSelect(nums, left, q - 1, index);}}inline int randomPartition(vector<int>& nums, int left, int right) {int i = rand() % (right - left + 1) + left;swap(nums[i], nums[right]);return partition(nums, left, right);}inline int partition(vector<int>& nums, int left, int right) {int x = nums[right], i = left - 1;for (int j = left; j < right; ++j) {if (nums[j] <= x) {swap(nums[++i], nums[j]);}}swap(nums[i + 1], nums[right]);return i + 1;}int minMoves2(vector<int>& nums) {srand(time(0));int n = nums.size(), x = quickSelect(nums, 0, n - 1, n / 2), ret = 0;for (int i = 0; i < n; ++i) {ret += abs(nums[i] - x);}return ret;}
};

复杂度分析:

  • 时间复杂度: O ( n ) O(n) O(n) ,其中 n n n 是数组 nums \textit{nums} nums 的长度。快速选择算法的平均时间复杂度为 O ( n ) O(n) O(n)
  • 空间复杂度: O ( log ⁡ n ) O(\log n) O(logn) 。递归栈的平均占用空间为 O ( log ⁡ n ) O(\log n) O(logn)

这篇关于LeetCode 462. 最小操作次数使数组元素相等 II【贪心,排序或快速选择】中等的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/219948

相关文章

PyCharm接入DeepSeek实现AI编程的操作流程

《PyCharm接入DeepSeek实现AI编程的操作流程》DeepSeek是一家专注于人工智能技术研发的公司,致力于开发高性能、低成本的AI模型,接下来,我们把DeepSeek接入到PyCharm中... 目录引言效果演示创建API key在PyCharm中下载Continue插件配置Continue引言

使用Python实现操作mongodb详解

《使用Python实现操作mongodb详解》这篇文章主要为大家详细介绍了使用Python实现操作mongodb的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、示例二、常用指令三、遇到的问题一、示例from pymongo import MongoClientf

大数据小内存排序问题如何巧妙解决

《大数据小内存排序问题如何巧妙解决》文章介绍了大数据小内存排序的三种方法:数据库排序、分治法和位图法,数据库排序简单但速度慢,对设备要求高;分治法高效但实现复杂;位图法可读性差,但存储空间受限... 目录三种方法:方法概要数据库排序(http://www.chinasem.cn对数据库设备要求较高)分治法(常

使用MongoDB进行数据存储的操作流程

《使用MongoDB进行数据存储的操作流程》在现代应用开发中,数据存储是一个至关重要的部分,随着数据量的增大和复杂性的增加,传统的关系型数据库有时难以应对高并发和大数据量的处理需求,MongoDB作为... 目录什么是MongoDB?MongoDB的优势使用MongoDB进行数据存储1. 安装MongoDB

Linux使用fdisk进行磁盘的相关操作

《Linux使用fdisk进行磁盘的相关操作》fdisk命令是Linux中用于管理磁盘分区的强大文本实用程序,这篇文章主要为大家详细介绍了如何使用fdisk进行磁盘的相关操作,需要的可以了解下... 目录简介基本语法示例用法列出所有分区查看指定磁盘的区分管理指定的磁盘进入交互式模式创建一个新的分区删除一个存

Golang操作DuckDB实战案例分享

《Golang操作DuckDB实战案例分享》DuckDB是一个嵌入式SQL数据库引擎,它与众所周知的SQLite非常相似,但它是为olap风格的工作负载设计的,DuckDB支持各种数据类型和SQL特性... 目录DuckDB的主要优点环境准备初始化表和数据查询单行或多行错误处理和事务完整代码最后总结Duck

Java 字符数组转字符串的常用方法

《Java字符数组转字符串的常用方法》文章总结了在Java中将字符数组转换为字符串的几种常用方法,包括使用String构造函数、String.valueOf()方法、StringBuilder以及A... 目录1. 使用String构造函数1.1 基本转换方法1.2 注意事项2. 使用String.valu

在MyBatis的XML映射文件中<trim>元素所有场景下的完整使用示例代码

《在MyBatis的XML映射文件中<trim>元素所有场景下的完整使用示例代码》在MyBatis的XML映射文件中,trim元素用于动态添加SQL语句的一部分,处理前缀、后缀及多余的逗号或连接符,示... 在MyBATis的XML映射文件中,<trim>元素用于动态地添加SQL语句的一部分,例如SET或W

C# 读写ini文件操作实现

《C#读写ini文件操作实现》本文主要介绍了C#读写ini文件操作实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录一、INI文件结构二、读取INI文件中的数据在C#应用程序中,常将INI文件作为配置文件,用于存储应用程序的

Python使用qrcode库实现生成二维码的操作指南

《Python使用qrcode库实现生成二维码的操作指南》二维码是一种广泛使用的二维条码,因其高效的数据存储能力和易于扫描的特点,广泛应用于支付、身份验证、营销推广等领域,Pythonqrcode库是... 目录一、安装 python qrcode 库二、基本使用方法1. 生成简单二维码2. 生成带 Log