如何深入理解 StatsD 与 Graphite ?

2023-10-14 16:32
文章标签 深入 理解 statsd graphite

本文主要是介绍如何深入理解 StatsD 与 Graphite ?,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

众所周知,StatsD 负责收集并聚合测量值。之后,它会将数据传给 Graphite,后者以时间序列为依据存储数据,并绘制图表。但是,我们不知道,基于 http 访问的图表在展示时,是基于每秒钟的请求数,每次留存的平均请求数还是其它。让我们就以此为目标,来一探究竟吧!本文系 OneAPM 工程师编译整理。

理解 StatsD 与 Graphite

StatsD

为了全面了解 StatsD 的工作原理,我阅读了它的源码。之前我就耳闻 StatsD 是一种简单的应用,但读过源码后才发现它竟如此简单!在主脚本文件只有300多行代码,而Graphite 的后端代码只有150行左右。

StatsD 中的概念

在这个文档中,列出了一些需要理解的 StatsD 概念。

Buckets

当一个 Whisper 文件被创建,它会有一个不会改变的固定大小。在这个文件中可能有多个 "buckets" 对应于不同分别率的数据点,每个 bucket 也有一个保留属性指明数据点应该在 bucket 中应该被保留的时间长度,Whisper 执行一些简单的数学计算来计算出多少数据点会被实际保存在每个 bucket 中。

Values

每个 stat 都有一个 value,该值的解释方式依赖于 modifier。通常,values 应该是整数。

Flush Interval

在 flush interval (冲洗间隔,通常为10秒)超时之后,stats 会聚集起来,传送到上游的后端服务。

测量值类别

计数器

计数器很简单。它会给 bucket 加 value,并存储在内存中,直到 flush interval 超时。

让我们看一下生成计数器 stats 的源码,该 stats 会被推送到后端。

for (key in counters) {var value = counters[key];var valuePerSecond = value / (flushInterval / 1000); // calculate "per second" ratestatString += 'stats.'+ key + ' ' + valuePerSecond + ' ' + ts + "\n";statString += 'stats_counts.' + key + ' ' + value  + ' ' + ts + "\n";numStats += 1;
}

首先,StatsD 会迭代它收到的所有计数器,对每个计数器它都会分配两个变量。一个变量用于存储计数器的 value,另一个存储 per-second value。之后,它会将 values 加至 statString,同时增加 numStats 变量的值。

如果你使用默认的 flush interval(10秒),并在每个间隔通过某个计数器给 StatsD 传送7个增量。则计时器的 value 为 7,而 per-second value 为 0.7。

计时器

计时器用于收集数字。他们不必要包含时间值。你可以收集某个存储器中的字节数、对象数或任意数字。计时器的一大好处在于,你可以得到平均值、总值、计数值和上下限值。给 StatsD 设置一个计时器,就能在数据传送给 Graphite 之前自动计算这些量。

计时器的源码比计数器的源码要稍微复杂一些。

for (key in timers) {if (timers[key].length > 0) {
var values = timers[key].sort(function (a,b) { return a-b; });
var count = values.length;
var min = values[0];
var max = values[count - 1];var cumulativeValues = [min];
for (var i = 1; i < count; i++) {cumulativeValues.push(values[i] + cumulativeValues[i-1]);
}var sum = min;
var mean = min;
var maxAtThreshold = max;var message = "";var key2;for (key2 in pctThreshold) {var pct = pctThreshold[key2];if (count > 1) {var thresholdIndex = Math.round(((100 - pct) / 100) * count);var numInThreshold = count - thresholdIndex;maxAtThreshold = values[numInThreshold - 1];sum = cumulativeValues[numInThreshold - 1];mean = sum / numInThreshold;}var clean_pct = '' + pct;clean_pct.replace('.', '_');message += 'stats.timers.' + key + '.mean_'  + clean_pct + ' ' + mean           + ' ' + ts + "\n";message += 'stats.timers.' + key + '.upper_' + clean_pct + ' ' + maxAtThreshold + ' ' + ts + "\n";message += 'stats.timers.' + key + '.sum_' + clean_pct + ' ' + sum + ' ' + ts + "\n";
}sum = cumulativeValues[count-1];
mean = sum / count;message += 'stats.timers.' + key + '.upper ' + max   + ' ' + ts + "\n";
message += 'stats.timers.' + key + '.lower ' + min   + ' ' + ts + "\n";
message += 'stats.timers.' + key + '.count ' + count + ' ' + ts + "\n";
message += 'stats.timers.' + key + '.sum ' + sum  + ' ' + ts + "\n";
message += 'stats.timers.' + key + '.mean ' + mean + ' ' + ts + "\n";
statString += message;numStats += 1;
}}

如果在默认的 flush interval 内,你将下列计数器 values 传给 StatsD:

  • 450
  • 120
  • 553
  • 994
  • 334
  • 844
  • 675
  • 496

StatsD 将会计数下面的 values:

  • mean_90 496
  • upper_90 844
  • sum_90 3472
  • upper 994
  • lower 120
  • count 8
  • sum 4466
  • mean 558.25

Gauges

一个 guage 代表着时间段内某点的任意 vaule,是 StatsD 中最简单的类型。你可以给它传任意值,它会传给后端。 Gauge stats 的源码只有短短四行。

for (key in gauges) {  statString += 'stats.gauges.' + key + ' ' + gauges[key] + ' ' + ts + "\n";numStats += 1;
}

给 StatsD 传一个数字,它会不经处理地将该数字传到后端。值得注意的是,在一个 flush interval 内,只有 gauge 最后的值会传送到后端。因此,如果你在一个 flush interval 内,将下面的 gauge 值传给 StatsD:

  • 643
  • 754
  • 583

会传到后端的值只有583而已。该 gauge 的值会一直存储在内存中,直到 flush interval 结束才传值。

Graphite

现在,我们已经了解数据是怎样从 StatsD 传出来的,让我们看看它在 Graphite 里是如何存储并处理的。

总览

在 Graphite 文档里,我们可以找到 Graphite 概览,此概览总结了 Graphite 的两个要点:

  • Graphite 存储数值型带有时间序列的数据。
  • Graphite 按需绘制图表。

Graphite 由三部分组成:

  • carbon :监听时间序列的数据的后台程序。
  • whisper:一个简单的数据库库,用来存储时间序列数据。
  • webapp: Django webapp,使用 Cairo 来根据需要呈现图形。

Graphite 当做时间序列数据的格式如下:

<key> <numeric value> <timestamp>  

存储方案

Graphite 采用可配置的存储方案用以定义所存数据的留存率。它会给数据路径匹配特定的模式,从而决定所存数据的频率和来历。

以下配置示例截取自 StatsD 文档。

[stats]
pattern = ^stats\..*
retentions = 10:2160,60:10080,600:262974

该示例表明,匹配上述样式的数据都会套用这些留存。留存的格式为 frequency: history。所以,该配置允许我们将10秒钟的数据存储6个小时,1分钟的数据存储1周,10分钟的数据存储5年。

在 Graphite 显示计时器

了解了这么多,我们来看看一个简单的 ruby 脚本,该脚本能收集 HTTP 请求的时间。

#!/usr/bin/env rubyrequire 'rubygems' if RUBY_VERSION < '1.9.0'
require './statsdclient.rb'
require 'typhoeus'Statsd.host = 'localhost'
Statsd.port = 8125def to_ms time(1000 * time).to_i
endwhile truestart_time = Time.now.to_fresp = Typhoeus::Request.get 'http://www.example.org/system/information'end_time = Time.now.to_felapsed_time = (1000 * end_time) - (to_ms start_time)response_time = to_ms resp.timestart_transfer_time = to_ms resp.start_transfer_timeapp_connect_time = to_ms resp.app_connect_timepretransfer_time = to_ms resp.pretransfer_timeconnect_time = to_ms resp.connect_timename_lookup_time = to_ms resp.name_lookup_timeStatsd.timing('http_request.elapsed_time', elapsed_time)Statsd.timing('http_request.response_time', response_time)Statsd.timing('http_request.start_transfer_time', start_transfer_time)Statsd.timing('http_request.app_connect_time', app_connect_time)Statsd.timing('http_request.pretransfer_time', pretransfer_time)Statsd.timing('http_request.connect_time', connect_time)Statsd.timing('http_request.name_lookup_time', name_lookup_time)sleep 10
end

让我们看看该数据生成的 Graphite 图。该数据来自 2 分钟前,而 elapsed_time 则来自前面的脚本。

图像生成

Render URL

下面图片的 Render URL

/render/?width=586&height=308&from=-2minutes&target=stats.timers.http_request.elapsed_time.sum

Graphite 生成的图片

该图片简单地描绘了 http 请求在一段时间内的 elapsed_time 值。

JSON-data

Render URL

下面 JSON-data 的 Render URL

/render/?width=586&height=308&from=-2minutes&target=stats.timers.http_request.elapsed_time.sum&format=json

来自 Graphite 的 JSON-output

在下面的结果中,我们可以查看来自 Graphite 的源数据。这些数据来自12个不同的数据点,也即 StatsD 10 秒 flush internal 的两分钟。Graphite 绘制数据就是如此简单。

此外,借助 JSONLint,JSON-data 的数据显示更加美观。

[{"target": "stats.timers.http_request.elapsed_time.sum","datapoints": [[53.449951171875,1343038130],[50.3916015625,1343038140],[50.1357421875,1343038150],[39.601806640625,1343038160],[41.5263671875,1343038170],[34.3974609375,1343038180],[36.3818359375,1343038190],[35.009033203125,1343038200],[37.0087890625,1343038210],[38.486572265625,1343038220],[45.66064453125,1343038230],[null,1343038240]]}
]

在 Graphite 绘制 gauge 图像

下面的简单脚本能将 gauge 传送给 StatsD,模拟用户注册的过程。

#!/usr/bin/env rubyrequire './statsdclient.rb'Statsd.host = 'localhost'  
Statsd.port = 8125user_registrations = 1while true  user_registrations += Random.rand 128Statsd.gauge('user_registrations', user_registrations)sleep 10
end  

图像显示——用户注册数量

Render URL

下面图片的 Render URL

/render/?width=586&height=308&from=-20minutes&target=stats.gauges.user_registrations

来自 Graphite 的图片

另一个简单的图片,展示总的注册数。

图片显示——每分钟的用户注册数

使用 Graphite 的衍生函数,可以获得每分钟的用户注册数量。

Render URL

下面图片的 Render URL

/render/?width=586&height=308&from=-20minutes&target=derivative(stats.gauges.user_registrations)

来自 Graphite 的图片

该图片所用的数据跟之前的图片一致,但是使用了衍生函数从而显示每分钟的注册率。

结论

深入了解 StatsD 与 Graphite 的工作原理,能让我们更加明白 StatsD 所传送的数据种类,如何传送,以及怎样更有效地根据 Graphite 读取数据。

原文地址:https://blog.pkhamre.com/understanding-statsd-and-graphite/

这篇关于如何深入理解 StatsD 与 Graphite ?的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/211750

相关文章

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

认识、理解、分类——acm之搜索

普通搜索方法有两种:1、广度优先搜索;2、深度优先搜索; 更多搜索方法: 3、双向广度优先搜索; 4、启发式搜索(包括A*算法等); 搜索通常会用到的知识点:状态压缩(位压缩,利用hash思想压缩)。

深入探索协同过滤:从原理到推荐模块案例

文章目录 前言一、协同过滤1. 基于用户的协同过滤(UserCF)2. 基于物品的协同过滤(ItemCF)3. 相似度计算方法 二、相似度计算方法1. 欧氏距离2. 皮尔逊相关系数3. 杰卡德相似系数4. 余弦相似度 三、推荐模块案例1.基于文章的协同过滤推荐功能2.基于用户的协同过滤推荐功能 前言     在信息过载的时代,推荐系统成为连接用户与内容的桥梁。本文聚焦于

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言

【C++高阶】C++类型转换全攻略:深入理解并高效应用

📝个人主页🌹:Eternity._ ⏩收录专栏⏪:C++ “ 登神长阶 ” 🤡往期回顾🤡:C++ 智能指针 🌹🌹期待您的关注 🌹🌹 ❀C++的类型转换 📒1. C语言中的类型转换📚2. C++强制类型转换⛰️static_cast🌞reinterpret_cast⭐const_cast🍁dynamic_cast 📜3. C++强制类型转换的原因📝

深入手撕链表

链表 分类概念单链表增尾插头插插入 删尾删头删删除 查完整实现带头不带头 双向链表初始化增尾插头插插入 删查完整代码 数组 分类 #mermaid-svg-qKD178fTiiaYeKjl {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-

深入理解RxJava:响应式编程的现代方式

在当今的软件开发世界中,异步编程和事件驱动的架构变得越来越重要。RxJava,作为响应式编程(Reactive Programming)的一个流行库,为Java和Android开发者提供了一种强大的方式来处理异步任务和事件流。本文将深入探讨RxJava的核心概念、优势以及如何在实际项目中应用它。 文章目录 💯 什么是RxJava?💯 响应式编程的优势💯 RxJava的核心概念

如何通俗理解注意力机制?

1、注意力机制(Attention Mechanism)是机器学习和深度学习中一种模拟人类注意力的方法,用于提高模型在处理大量信息时的效率和效果。通俗地理解,它就像是在一堆信息中找到最重要的部分,把注意力集中在这些关键点上,从而更好地完成任务。以下是几个简单的比喻来帮助理解注意力机制: 2、寻找重点:想象一下,你在阅读一篇文章的时候,有些段落特别重要,你会特别注意这些段落,反复阅读,而对其他部分

深入理解数据库的 4NF:多值依赖与消除数据异常

在数据库设计中, "范式" 是一个常常被提到的重要概念。许多初学者在学习数据库设计时,经常听到第一范式(1NF)、第二范式(2NF)、第三范式(3NF)以及 BCNF(Boyce-Codd范式)。这些范式都旨在通过消除数据冗余和异常来优化数据库结构。然而,当我们谈到 4NF(第四范式)时,事情变得更加复杂。本文将带你深入了解 多值依赖 和 4NF,帮助你在数据库设计中消除更高级别的异常。 什么是

分布式系统的个人理解小结

分布式系统:分的微小服务,以小而独立的业务为单位,形成子系统。 然后分布式系统中需要有统一的调用,形成大的聚合服务。 同时,微服务群,需要有交流(通讯,注册中心,同步,异步),有管理(监控,调度)。 对外服务,需要有控制的对外开发,安全网关。