c++视觉处理----绘制直方图,H—S直方图,二维H—S直方图,RGB三色直方图

2023-10-14 02:01

本文主要是介绍c++视觉处理----绘制直方图,H—S直方图,二维H—S直方图,RGB三色直方图,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

直方图:cv::calcHist()

cv::calcHist() 是 OpenCV 中用于计算直方图的函数。直方图是一种用于可视化图像亮度或颜色分布的工具。这函数通常应用于灰度图像或彩色图像的各个通道。以下是 cv::calcHist() 函数的基本语法和参数:

void cv::calcHist(const cv::Mat* images, // 输入图像的数组int nimages,           // 输入图像的数量const int* channels,   // 通道索引数组(可以为空)const cv::InputArray& mask, // 掩模图像(可以为空)cv::OutputArray& hist,      // 输出的直方图int dims,                 // 直方图的维数const int* histSize,      // 直方图的尺寸数组const float* ranges[],    // 直方图范围数组bool uniform = true,      // 直方图是否均匀分布bool accumulate = false   // 是否累积直方图
);

以下是参数的说明:

  • images:输入图像的数组,可以是一个或多个图像。
  • nimages:输入图像的数量,通常为1。
  • channels:通道索引数组,指定要计算直方图的通道。对于灰度图像,通常为0。对于彩色图像,通道索引可以是{0, 1, 2},分别代表蓝色、绿色和红色通道。
  • mask:可选的掩模图像,用于限制计算直方图的区域。可以为空。
  • hist:输出的直方图。
  • dims:直方图的维数。通常为1。
  • histSize:直方图的尺寸数组,表示直方图的柱数。
  • ranges:直方图范围数组,指定直方图的范围。通常为{0, 256},表示像素值的范围。
  • uniform:指定是否将直方图均匀分布,如果为true,每个直方柱的宽度相同。
  • accumulate:指定是否累积直方图,如果为true,直方图将被累积。

cv::calcHist() 函数用于计算直方图后,你可以进一步分析或可视化直方图数据。这对于图像处理、分析和计算机视觉任务非常有用。

以下是一个更完整的 cv::calcHist() 函数的示例,它将计算一幅图像的直方图并绘制出来。这个示例假定你已经读取了一幅图像,并且使用灰度图像计算直方图:

#include <opencv2/opencv.hpp>
#include <opencv2/highgui/highgui.hpp>int main() {// 读取图像cv::Mat image = cv::imread("your_image.jpg");if (image.empty()) {std::cerr << "Error: Could not read the image." << std::endl;return -1;}// 将图像转换为灰度图像cv::Mat gray_image;cv::cvtColor(image, gray_image, cv::COLOR_BGR2GRAY);// 定义直方图的参数int histSize = 256; // 直方图中的条柱数量float range[] = {0, 256}; // 像素值范围const float* histRange = {range};// 计算直方图cv::Mat hist;cv::calcHist(&gray_image, 1, 0, cv::Mat(), hist, 1, &histSize, &histRange);// 创建一个空的直方图图像int hist_w = 512;int hist_h = 400;cv::Mat hist_image(hist_h, hist_w, CV_8UC3, cv::Scalar(0, 0, 0));// 归一化直方图cv::normalize(hist, hist, 0, hist_image.rows, cv::NORM_MINMAX, -1, cv::Mat());// 绘制直方图for (int i = 1; i < histSize; i++) {cv::line(hist_image, cv::Point(i - 1, hist_h - cvRound(hist.at<float>(i - 1))),cv::Point(i, hist_h - cvRound(hist.at<float>(i))),cv::Scalar(255, 255, 255), 2, 8, 0);}// 显示原始图像和直方图cv::namedWindow("Original Image", cv::WINDOW_AUTOSIZE);cv::imshow("Original Image", gray_image);cv::namedWindow("Histogram", cv::WINDOW_AUTOSIZE);cv::imshow("Histogram", hist_image);cv::waitKey(0);return 0;
}

这个示例将图像转换为灰度图像,计算其直方图,然后绘制直方图并显示原始图像以及对应的直方图。希望这个示例可以帮助你理解如何使用 cv::calcHist() 函数来计算和可视化图像的直方图。
在这里插入图片描述

绘制H—S直方图

#include <opencv2/opencv.hpp>int main() {// 读取图像cv::Mat image = cv::imread("1.jpg");if (image.empty()) {std::cerr << "Error: Could not read the image." << std::endl;return -1;}// 将图像转换为HSV颜色空间cv::Mat hsv_image;cv::cvtColor(image, hsv_image, cv::COLOR_BGR2HSV);// 分割H和S通道std::vector<cv::Mat> channels;cv::split(hsv_image, channels);// 定义直方图的参数int histSize = 256; // 直方图中的条柱数量float hRange[] = { 0, 256 }; // 色相通道的像素值范围const float* hHistRange = { hRange };float sRange[] = { 0, 256 }; // 饱和度通道的像素值范围const float* sHistRange = { sRange };// 计算H和S通道的直方图cv::Mat h_hist, s_hist;cv::calcHist(&channels[0], 1, 0, cv::Mat(), h_hist, 1, &histSize, &hHistRange);cv::calcHist(&channels[1], 1, 0, cv::Mat(), s_hist, 1, &histSize, &sHistRange);// 归一化直方图cv::normalize(h_hist, h_hist, 0, 255, cv::NORM_MINMAX, -1, cv::Mat());cv::normalize(s_hist, s_hist, 0, 255, cv::NORM_MINMAX, -1, cv::Mat());// 创建一个直方图图像int hist_w = 512;int hist_h = 400;cv::Mat hist_image(hist_h, hist_w, CV_8UC3, cv::Scalar(0, 0, 0));// 绘制H通道直方图for (int i = 1; i < histSize; i++) {cv::line(hist_image, cv::Point(i - 1, hist_h - cvRound(h_hist.at<float>(i - 1))),cv::Point(i, hist_h - cvRound(h_hist.at<float>(i))),cv::Scalar(0, 0, 255), 2, 8, 0);}// 绘制S通道直方图for (int i = 1; i < histSize; i++) {cv::line(hist_image, cv::Point(i - 1, hist_h - cvRound(s_hist.at<float>(i - 1))),cv::Point(i, hist_h - cvRound(s_hist.at<float>(i))),cv::Scalar(0, 255, 0), 2, 8, 0);}// 显示图像和H-S直方图cv::imshow("mage", image);cv::imshow("H-S Histogram", hist_image);cv::waitKey(0);return 0;
}

在这里插入图片描述

绘制二维H—S直方图

#include <opencv2/opencv.hpp>int main() {// 读取图像cv::Mat image = cv::imread("1.jpg");if (image.empty()) {std::cerr << "Error: Could not read the image." << std::endl;return -1;}// 将图像转换为HSV颜色空间cv::Mat hsv_image;cv::cvtColor(image, hsv_image, cv::COLOR_BGR2HSV);// 定义直方图的参数int h_bins = 30; // 色相通道的柱数int s_bins = 32; // 饱和度通道的柱数int histSize[] = {h_bins, s_bins};float h_range[] = {0, 180}; // 色相通道的范围float s_range[] = {0, 256}; // 饱和度通道的范围const float* ranges[] = {h_range, s_range};// 计算H-S直方图cv::MatND hist;int channels[] = {0, 1}; // 色相和饱和度通道cv::calcHist(&hsv_image, 1, channels, cv::Mat(), hist, 2, histSize, ranges, true, false);// 归一化直方图cv::normalize(hist, hist, 0, 1, cv::NORM_MINMAX, -1, cv::Mat());// 创建一个H-S直方图图像int hist_w = 512;int hist_h = 512;cv::Mat hist_image(hist_h, hist_w, CV_8UC3, cv::Scalar(0, 0, 0));// 绘制直方图for (int h = 0; h < h_bins; h++) {for (int s = 0; s < s_bins; s++) {float bin_val = hist.at<float>(h, s);int intensity = cvRound(bin_val * 255);cv::rectangle(hist_image, cv::Point(h * (hist_w / h_bins), s * (hist_h / s_bins)),cv::Point((h + 1) * (hist_w / h_bins), (s + 1) * (hist_h / s_bins)),cv::Scalar(intensity, intensity, intensity), -1);}}// 显示原始图像和H-S直方图cv::imshow("Image", image);cv::imshow("H-S Histogram", hist_image);cv::waitKey(0);return 0;
}

在这里插入图片描述

绘制RGB三色直方图

#include <opencv2/opencv.hpp>int main() {// 读取图像cv::Mat image = cv::imread("1.jpg");if (image.empty()) {std::cerr << "Error: Could not read the image." << std::endl;return -1;}// 定义直方图的参数int histSize = 256; // 直方图中的条柱数量float range[] = { 0, 256 }; // 像素值范围const float* histRange = { range };// 分割RGB通道std::vector<cv::Mat> channels;cv::split(image, channels);// 计算红色通道的直方图cv::Mat red_hist;cv::calcHist(&channels[2], 1, 0, cv::Mat(), red_hist, 1, &histSize, &histRange);// 计算绿色通道的直方图cv::Mat green_hist;cv::calcHist(&channels[1], 1, 0, cv::Mat(), green_hist, 1, &histSize, &histRange);// 计算蓝色通道的直方图cv::Mat blue_hist;cv::calcHist(&channels[0], 1, 0, cv::Mat(), blue_hist, 1, &histSize, &histRange);// 归一化直方图cv::normalize(red_hist, red_hist, 0, 255, cv::NORM_MINMAX, -1, cv::Mat());cv::normalize(green_hist, green_hist, 0, 255, cv::NORM_MINMAX, -1, cv::Mat());cv::normalize(blue_hist, blue_hist, 0, 255, cv::NORM_MINMAX, -1, cv::Mat());// 创建一个直方图图像int hist_w = 512;int hist_h = 400;cv::Mat hist_image(hist_h, hist_w, CV_8UC3, cv::Scalar(0, 0, 0));// 绘制红色通道直方图for (int i = 1; i < histSize; i++) {cv::line(hist_image, cv::Point(i - 1, hist_h - cvRound(red_hist.at<float>(i - 1))),cv::Point(i, hist_h - cvRound(red_hist.at<float>(i))),cv::Scalar(0, 0, 255), 2, 8, 0);}// 绘制绿色通道直方图for (int i = 1; i < histSize; i++) {cv::line(hist_image, cv::Point(i - 1, hist_h - cvRound(green_hist.at<float>(i - 1))),cv::Point(i, hist_h - cvRound(green_hist.at<float>(i))),cv::Scalar(0, 255, 0), 2, 8, 0);}// 绘制蓝色通道直方图for (int i = 1; i < histSize; i++) {cv::line(hist_image, cv::Point(i - 1, hist_h - cvRound(blue_hist.at<float>(i - 1))),cv::Point(i, hist_h - cvRound(blue_hist.at<float>(i))),cv::Scalar(255, 0, 0), 2, 8, 0);}// 显示原始图像和RGB三色直方图cv::imshow("mage", image);cv::imshow("RGB Histogram", hist_image);cv::waitKey(0);return 0;
}

在这里插入图片描述

这篇关于c++视觉处理----绘制直方图,H—S直方图,二维H—S直方图,RGB三色直方图的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/207378

相关文章

Java字符串处理全解析(String、StringBuilder与StringBuffer)

《Java字符串处理全解析(String、StringBuilder与StringBuffer)》:本文主要介绍Java字符串处理全解析(String、StringBuilder与StringBu... 目录Java字符串处理全解析:String、StringBuilder与StringBuffer一、St

C++使用printf语句实现进制转换的示例代码

《C++使用printf语句实现进制转换的示例代码》在C语言中,printf函数可以直接实现部分进制转换功能,通过格式说明符(formatspecifier)快速输出不同进制的数值,下面给大家分享C+... 目录一、printf 原生支持的进制转换1. 十进制、八进制、十六进制转换2. 显示进制前缀3. 指

浅析Java中如何优雅地处理null值

《浅析Java中如何优雅地处理null值》这篇文章主要为大家详细介绍了如何结合Lambda表达式和Optional,让Java更优雅地处理null值,感兴趣的小伙伴可以跟随小编一起学习一下... 目录场景 1:不为 null 则执行场景 2:不为 null 则返回,为 null 则返回特定值或抛出异常场景

C++中初始化二维数组的几种常见方法

《C++中初始化二维数组的几种常见方法》本文详细介绍了在C++中初始化二维数组的不同方式,包括静态初始化、循环、全部为零、部分初始化、std::array和std::vector,以及std::vec... 目录1. 静态初始化2. 使用循环初始化3. 全部初始化为零4. 部分初始化5. 使用 std::a

深入理解Apache Kafka(分布式流处理平台)

《深入理解ApacheKafka(分布式流处理平台)》ApacheKafka作为现代分布式系统中的核心中间件,为构建高吞吐量、低延迟的数据管道提供了强大支持,本文将深入探讨Kafka的核心概念、架构... 目录引言一、Apache Kafka概述1.1 什么是Kafka?1.2 Kafka的核心概念二、Ka

C++ vector的常见用法超详细讲解

《C++vector的常见用法超详细讲解》:本文主要介绍C++vector的常见用法,包括C++中vector容器的定义、初始化方法、访问元素、常用函数及其时间复杂度,通过代码介绍的非常详细,... 目录1、vector的定义2、vector常用初始化方法1、使编程用花括号直接赋值2、使用圆括号赋值3、ve

resultMap如何处理复杂映射问题

《resultMap如何处理复杂映射问题》:本文主要介绍resultMap如何处理复杂映射问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录resultMap复杂映射问题Ⅰ 多对一查询:学生——老师Ⅱ 一对多查询:老师——学生总结resultMap复杂映射问题

如何高效移除C++关联容器中的元素

《如何高效移除C++关联容器中的元素》关联容器和顺序容器有着很大不同,关联容器中的元素是按照关键字来保存和访问的,而顺序容器中的元素是按它们在容器中的位置来顺序保存和访问的,本文介绍了如何高效移除C+... 目录一、简介二、移除给定位置的元素三、移除与特定键值等价的元素四、移除满足特android定条件的元

Python获取C++中返回的char*字段的两种思路

《Python获取C++中返回的char*字段的两种思路》有时候需要获取C++函数中返回来的不定长的char*字符串,本文小编为大家找到了两种解决问题的思路,感兴趣的小伙伴可以跟随小编一起学习一下... 有时候需要获取C++函数中返回来的不定长的char*字符串,目前我找到两种解决问题的思路,具体实现如下:

C++ Sort函数使用场景分析

《C++Sort函数使用场景分析》sort函数是algorithm库下的一个函数,sort函数是不稳定的,即大小相同的元素在排序后相对顺序可能发生改变,如果某些场景需要保持相同元素间的相对顺序,可使... 目录C++ Sort函数详解一、sort函数调用的两种方式二、sort函数使用场景三、sort函数排序