c++视觉处理----绘制直方图,H—S直方图,二维H—S直方图,RGB三色直方图

2023-10-14 02:01

本文主要是介绍c++视觉处理----绘制直方图,H—S直方图,二维H—S直方图,RGB三色直方图,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

直方图:cv::calcHist()

cv::calcHist() 是 OpenCV 中用于计算直方图的函数。直方图是一种用于可视化图像亮度或颜色分布的工具。这函数通常应用于灰度图像或彩色图像的各个通道。以下是 cv::calcHist() 函数的基本语法和参数:

void cv::calcHist(const cv::Mat* images, // 输入图像的数组int nimages,           // 输入图像的数量const int* channels,   // 通道索引数组(可以为空)const cv::InputArray& mask, // 掩模图像(可以为空)cv::OutputArray& hist,      // 输出的直方图int dims,                 // 直方图的维数const int* histSize,      // 直方图的尺寸数组const float* ranges[],    // 直方图范围数组bool uniform = true,      // 直方图是否均匀分布bool accumulate = false   // 是否累积直方图
);

以下是参数的说明:

  • images:输入图像的数组,可以是一个或多个图像。
  • nimages:输入图像的数量,通常为1。
  • channels:通道索引数组,指定要计算直方图的通道。对于灰度图像,通常为0。对于彩色图像,通道索引可以是{0, 1, 2},分别代表蓝色、绿色和红色通道。
  • mask:可选的掩模图像,用于限制计算直方图的区域。可以为空。
  • hist:输出的直方图。
  • dims:直方图的维数。通常为1。
  • histSize:直方图的尺寸数组,表示直方图的柱数。
  • ranges:直方图范围数组,指定直方图的范围。通常为{0, 256},表示像素值的范围。
  • uniform:指定是否将直方图均匀分布,如果为true,每个直方柱的宽度相同。
  • accumulate:指定是否累积直方图,如果为true,直方图将被累积。

cv::calcHist() 函数用于计算直方图后,你可以进一步分析或可视化直方图数据。这对于图像处理、分析和计算机视觉任务非常有用。

以下是一个更完整的 cv::calcHist() 函数的示例,它将计算一幅图像的直方图并绘制出来。这个示例假定你已经读取了一幅图像,并且使用灰度图像计算直方图:

#include <opencv2/opencv.hpp>
#include <opencv2/highgui/highgui.hpp>int main() {// 读取图像cv::Mat image = cv::imread("your_image.jpg");if (image.empty()) {std::cerr << "Error: Could not read the image." << std::endl;return -1;}// 将图像转换为灰度图像cv::Mat gray_image;cv::cvtColor(image, gray_image, cv::COLOR_BGR2GRAY);// 定义直方图的参数int histSize = 256; // 直方图中的条柱数量float range[] = {0, 256}; // 像素值范围const float* histRange = {range};// 计算直方图cv::Mat hist;cv::calcHist(&gray_image, 1, 0, cv::Mat(), hist, 1, &histSize, &histRange);// 创建一个空的直方图图像int hist_w = 512;int hist_h = 400;cv::Mat hist_image(hist_h, hist_w, CV_8UC3, cv::Scalar(0, 0, 0));// 归一化直方图cv::normalize(hist, hist, 0, hist_image.rows, cv::NORM_MINMAX, -1, cv::Mat());// 绘制直方图for (int i = 1; i < histSize; i++) {cv::line(hist_image, cv::Point(i - 1, hist_h - cvRound(hist.at<float>(i - 1))),cv::Point(i, hist_h - cvRound(hist.at<float>(i))),cv::Scalar(255, 255, 255), 2, 8, 0);}// 显示原始图像和直方图cv::namedWindow("Original Image", cv::WINDOW_AUTOSIZE);cv::imshow("Original Image", gray_image);cv::namedWindow("Histogram", cv::WINDOW_AUTOSIZE);cv::imshow("Histogram", hist_image);cv::waitKey(0);return 0;
}

这个示例将图像转换为灰度图像,计算其直方图,然后绘制直方图并显示原始图像以及对应的直方图。希望这个示例可以帮助你理解如何使用 cv::calcHist() 函数来计算和可视化图像的直方图。
在这里插入图片描述

绘制H—S直方图

#include <opencv2/opencv.hpp>int main() {// 读取图像cv::Mat image = cv::imread("1.jpg");if (image.empty()) {std::cerr << "Error: Could not read the image." << std::endl;return -1;}// 将图像转换为HSV颜色空间cv::Mat hsv_image;cv::cvtColor(image, hsv_image, cv::COLOR_BGR2HSV);// 分割H和S通道std::vector<cv::Mat> channels;cv::split(hsv_image, channels);// 定义直方图的参数int histSize = 256; // 直方图中的条柱数量float hRange[] = { 0, 256 }; // 色相通道的像素值范围const float* hHistRange = { hRange };float sRange[] = { 0, 256 }; // 饱和度通道的像素值范围const float* sHistRange = { sRange };// 计算H和S通道的直方图cv::Mat h_hist, s_hist;cv::calcHist(&channels[0], 1, 0, cv::Mat(), h_hist, 1, &histSize, &hHistRange);cv::calcHist(&channels[1], 1, 0, cv::Mat(), s_hist, 1, &histSize, &sHistRange);// 归一化直方图cv::normalize(h_hist, h_hist, 0, 255, cv::NORM_MINMAX, -1, cv::Mat());cv::normalize(s_hist, s_hist, 0, 255, cv::NORM_MINMAX, -1, cv::Mat());// 创建一个直方图图像int hist_w = 512;int hist_h = 400;cv::Mat hist_image(hist_h, hist_w, CV_8UC3, cv::Scalar(0, 0, 0));// 绘制H通道直方图for (int i = 1; i < histSize; i++) {cv::line(hist_image, cv::Point(i - 1, hist_h - cvRound(h_hist.at<float>(i - 1))),cv::Point(i, hist_h - cvRound(h_hist.at<float>(i))),cv::Scalar(0, 0, 255), 2, 8, 0);}// 绘制S通道直方图for (int i = 1; i < histSize; i++) {cv::line(hist_image, cv::Point(i - 1, hist_h - cvRound(s_hist.at<float>(i - 1))),cv::Point(i, hist_h - cvRound(s_hist.at<float>(i))),cv::Scalar(0, 255, 0), 2, 8, 0);}// 显示图像和H-S直方图cv::imshow("mage", image);cv::imshow("H-S Histogram", hist_image);cv::waitKey(0);return 0;
}

在这里插入图片描述

绘制二维H—S直方图

#include <opencv2/opencv.hpp>int main() {// 读取图像cv::Mat image = cv::imread("1.jpg");if (image.empty()) {std::cerr << "Error: Could not read the image." << std::endl;return -1;}// 将图像转换为HSV颜色空间cv::Mat hsv_image;cv::cvtColor(image, hsv_image, cv::COLOR_BGR2HSV);// 定义直方图的参数int h_bins = 30; // 色相通道的柱数int s_bins = 32; // 饱和度通道的柱数int histSize[] = {h_bins, s_bins};float h_range[] = {0, 180}; // 色相通道的范围float s_range[] = {0, 256}; // 饱和度通道的范围const float* ranges[] = {h_range, s_range};// 计算H-S直方图cv::MatND hist;int channels[] = {0, 1}; // 色相和饱和度通道cv::calcHist(&hsv_image, 1, channels, cv::Mat(), hist, 2, histSize, ranges, true, false);// 归一化直方图cv::normalize(hist, hist, 0, 1, cv::NORM_MINMAX, -1, cv::Mat());// 创建一个H-S直方图图像int hist_w = 512;int hist_h = 512;cv::Mat hist_image(hist_h, hist_w, CV_8UC3, cv::Scalar(0, 0, 0));// 绘制直方图for (int h = 0; h < h_bins; h++) {for (int s = 0; s < s_bins; s++) {float bin_val = hist.at<float>(h, s);int intensity = cvRound(bin_val * 255);cv::rectangle(hist_image, cv::Point(h * (hist_w / h_bins), s * (hist_h / s_bins)),cv::Point((h + 1) * (hist_w / h_bins), (s + 1) * (hist_h / s_bins)),cv::Scalar(intensity, intensity, intensity), -1);}}// 显示原始图像和H-S直方图cv::imshow("Image", image);cv::imshow("H-S Histogram", hist_image);cv::waitKey(0);return 0;
}

在这里插入图片描述

绘制RGB三色直方图

#include <opencv2/opencv.hpp>int main() {// 读取图像cv::Mat image = cv::imread("1.jpg");if (image.empty()) {std::cerr << "Error: Could not read the image." << std::endl;return -1;}// 定义直方图的参数int histSize = 256; // 直方图中的条柱数量float range[] = { 0, 256 }; // 像素值范围const float* histRange = { range };// 分割RGB通道std::vector<cv::Mat> channels;cv::split(image, channels);// 计算红色通道的直方图cv::Mat red_hist;cv::calcHist(&channels[2], 1, 0, cv::Mat(), red_hist, 1, &histSize, &histRange);// 计算绿色通道的直方图cv::Mat green_hist;cv::calcHist(&channels[1], 1, 0, cv::Mat(), green_hist, 1, &histSize, &histRange);// 计算蓝色通道的直方图cv::Mat blue_hist;cv::calcHist(&channels[0], 1, 0, cv::Mat(), blue_hist, 1, &histSize, &histRange);// 归一化直方图cv::normalize(red_hist, red_hist, 0, 255, cv::NORM_MINMAX, -1, cv::Mat());cv::normalize(green_hist, green_hist, 0, 255, cv::NORM_MINMAX, -1, cv::Mat());cv::normalize(blue_hist, blue_hist, 0, 255, cv::NORM_MINMAX, -1, cv::Mat());// 创建一个直方图图像int hist_w = 512;int hist_h = 400;cv::Mat hist_image(hist_h, hist_w, CV_8UC3, cv::Scalar(0, 0, 0));// 绘制红色通道直方图for (int i = 1; i < histSize; i++) {cv::line(hist_image, cv::Point(i - 1, hist_h - cvRound(red_hist.at<float>(i - 1))),cv::Point(i, hist_h - cvRound(red_hist.at<float>(i))),cv::Scalar(0, 0, 255), 2, 8, 0);}// 绘制绿色通道直方图for (int i = 1; i < histSize; i++) {cv::line(hist_image, cv::Point(i - 1, hist_h - cvRound(green_hist.at<float>(i - 1))),cv::Point(i, hist_h - cvRound(green_hist.at<float>(i))),cv::Scalar(0, 255, 0), 2, 8, 0);}// 绘制蓝色通道直方图for (int i = 1; i < histSize; i++) {cv::line(hist_image, cv::Point(i - 1, hist_h - cvRound(blue_hist.at<float>(i - 1))),cv::Point(i, hist_h - cvRound(blue_hist.at<float>(i))),cv::Scalar(255, 0, 0), 2, 8, 0);}// 显示原始图像和RGB三色直方图cv::imshow("mage", image);cv::imshow("RGB Histogram", hist_image);cv::waitKey(0);return 0;
}

在这里插入图片描述

这篇关于c++视觉处理----绘制直方图,H—S直方图,二维H—S直方图,RGB三色直方图的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/207378

相关文章

Go语言使用Buffer实现高性能处理字节和字符

《Go语言使用Buffer实现高性能处理字节和字符》在Go中,bytes.Buffer是一个非常高效的类型,用于处理字节数据的读写操作,本文将详细介绍一下如何使用Buffer实现高性能处理字节和... 目录1. bytes.Buffer 的基本用法1.1. 创建和初始化 Buffer1.2. 使用 Writ

C++中实现调试日志输出

《C++中实现调试日志输出》在C++编程中,调试日志对于定位问题和优化代码至关重要,本文将介绍几种常用的调试日志输出方法,并教你如何在日志中添加时间戳,希望对大家有所帮助... 目录1. 使用 #ifdef _DEBUG 宏2. 加入时间戳:精确到毫秒3.Windows 和 MFC 中的调试日志方法MFC

Python视频处理库VidGear使用小结

《Python视频处理库VidGear使用小结》VidGear是一个高性能的Python视频处理库,本文主要介绍了Python视频处理库VidGear使用小结,文中通过示例代码介绍的非常详细,对大家的... 目录一、VidGear的安装二、VidGear的主要功能三、VidGear的使用示例四、VidGea

Python结合requests和Cheerio处理网页内容的操作步骤

《Python结合requests和Cheerio处理网页内容的操作步骤》Python因其简洁明了的语法和强大的库支持,成为了编写爬虫程序的首选语言之一,requests库是Python中用于发送HT... 目录一、前言二、环境搭建三、requests库的基本使用四、Cheerio库的基本使用五、结合req

使用Python处理CSV和Excel文件的操作方法

《使用Python处理CSV和Excel文件的操作方法》在数据分析、自动化和日常开发中,CSV和Excel文件是非常常见的数据存储格式,ython提供了强大的工具来读取、编辑和保存这两种文件,满足从基... 目录1. CSV 文件概述和处理方法1.1 CSV 文件格式的基本介绍1.2 使用 python 内

如何使用celery进行异步处理和定时任务(django)

《如何使用celery进行异步处理和定时任务(django)》文章介绍了Celery的基本概念、安装方法、如何使用Celery进行异步任务处理以及如何设置定时任务,通过Celery,可以在Web应用中... 目录一、celery的作用二、安装celery三、使用celery 异步执行任务四、使用celery

使用Python绘制蛇年春节祝福艺术图

《使用Python绘制蛇年春节祝福艺术图》:本文主要介绍如何使用Python的Matplotlib库绘制一幅富有创意的“蛇年有福”艺术图,这幅图结合了数字,蛇形,花朵等装饰,需要的可以参考下... 目录1. 绘图的基本概念2. 准备工作3. 实现代码解析3.1 设置绘图画布3.2 绘制数字“2025”3.3

深入理解C++ 空类大小

《深入理解C++空类大小》本文主要介绍了C++空类大小,规定空类大小为1字节,主要是为了保证对象的唯一性和可区分性,满足数组元素地址连续的要求,下面就来了解一下... 目录1. 保证对象的唯一性和可区分性2. 满足数组元素地址连续的要求3. 与C++的对象模型和内存管理机制相适配查看类对象内存在C++中,规

SpringBoot操作spark处理hdfs文件的操作方法

《SpringBoot操作spark处理hdfs文件的操作方法》本文介绍了如何使用SpringBoot操作Spark处理HDFS文件,包括导入依赖、配置Spark信息、编写Controller和Ser... 目录SpringBoot操作spark处理hdfs文件1、导入依赖2、配置spark信息3、cont

使用Python绘制可爱的招财猫

《使用Python绘制可爱的招财猫》招财猫,也被称为“幸运猫”,是一种象征财富和好运的吉祥物,经常出现在亚洲文化的商店、餐厅和家庭中,今天,我将带你用Python和matplotlib库从零开始绘制一... 目录1. 为什么选择用 python 绘制?2. 绘图的基本概念3. 实现代码解析3.1 设置绘图画