本文主要是介绍linux之cgroups资源限制,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
1. cgroups是什么
cgroups(Control Groups)最初叫Process Container,由Google工程师(Paul Menage和Rohit Seth)于2006年提出,后来因为Container有多重含义容易引起误解,就在2007年更名为Control Groups,并被整合进Linux内核。顾名思义就是把进程放到一个组里面统一加以控制。官方的定义如下{![引自:https://www.kernel.org/doc/Documentation/cgroups/cgroups.txt]}。
cgroups是Linux内核提供的一种机制,这种机制可以根据特定的行为,把一系列系统任务及其子任务整合(或分隔)到按资源划分等级的不同组内,从而为系统资源管理提供一个统一的框架。
通俗的来说,cgroups可以限制、记录、隔离进程组所使用的物理资源(包括:CPU、memory、IO等),为容器实现虚拟化提供了基本保证,是构建Docker等一系列虚拟化管理工具的基石。
对开发者来说,cgroups有如下四个有趣的特点:
- cgroups的API以一个伪文件系统的方式实现,即用户可以通过文件操作实现cgroups的组织管理。
- cgroups的组织管理操作单元可以细粒度到线程级别,用户态代码也可以针对系统分配的资源创建和销毁cgroups,从而实现资源再分配和管理。
- 所有资源管理的功能都以“subsystem(子系统)”的方式实现,接口统一。
- 子进程创建之初与其父进程处于同一个cgroups的控制组。
-
本质上来说,cgroups是内核附加在程序上的一系列钩子(hooks),通过程序运行时对资源的调度触发相应的钩子以达到资源追踪和限制的目的。
2. cgroups的作用
实现cgroups的主要目的是为不同用户层面的资源管理,提供一个统一化的接口。从单个进程的资源控制到操作系统层面的虚拟化。Cgroups提供了以下四大功能{![参照自:http://en.wikipedia.org/wiki/Cgroups]}。
- 资源限制(Resource Limitation):cgroups可以对进程组使用的资源总额进行限制。如设定应用运行时使用内存的上限,一旦超过这个配额就发出OOM(Out of Memory)。
- 优先级分配(Prioritization):通过分配的CPU时间片数量及硬盘IO带宽大小,实际上就相当于控制了进程运行的优先级。
- 资源统计(Accounting): cgroups可以统计系统的资源使用量,如CPU使用时长、内存用量等等,这个功能非常适用于计费。
- 进程控制(Control):cgroups可以对进程组执行挂起、恢复等操作。
过去有一段时间,内核开发者甚至把namespace也作为一个cgroups的subsystem加入进来,也就是说cgroups曾经甚至还包含了资源隔离的能力。但是资源隔离会给cgroups带来许多问题,如PID在循环出现的时候cgroup却出现了命名冲突、cgroup创建后进入新的namespace导致脱离了控制等等{![详见:https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=a77aea92010acf54ad785047234418d5d68772e2]},所以在2011年就被移除了。
3. 术语表
- task(任务):cgroups的术语中,task就表示系统的一个进程。
- cgroup(控制组):cgroups 中的资源控制都以cgroup为单位实现。cgroup表示按某种资源控制标准划分而成的任务组,包含一个或多个子系统。一个任务可以加入某个cgroup,也可以从某个cgroup迁移到另外一个cgroup。
- subsystem(子系统):cgroups中的subsystem就是一个资源调度控制器(Resource Controller)。比如CPU子系统可以控制CPU时间分配,内存子系统可以限制cgroup内存使用量。
- hierarchy(层级树):hierarchy由一系列cgroup以一个树状结构排列而成,每个hierarchy通过绑定对应的subsystem进行资源调度。hierarchy中的cgroup节点可以包含零或多个子节点,子节点继承父节点的属性。整个系统可以有多个hierarchy。
4. 组织结构与基本规则
大家在namespace技术的讲解中已经了解到,传统的Unix进程管理,实际上是先启动
init
进程作为根节点,再由init
节点创建子进程作为子节点,而每个子节点由可以创建新的子节点,如此往复,形成一个树状结构。而cgroups也是类似的树状结构,子节点都从父节点继承属性。它们最大的不同在于,系统中cgroup构成的hierarchy可以允许存在多个。如果进程模型是由
init
作为根节点构成的一棵树的话,那么cgroups的模型则是由多个hierarchy构成的森林。这样做的目的也很好理解,如果只有一个hierarchy,那么所有的task都要受到绑定其上的subsystem的限制,会给那些不需要这些限制的task造成麻烦。了解了cgroups的组织结构,我们再来了解cgroup、task、subsystem以及hierarchy四者间的相互关系及其基本规则{![参照自:https://access.redhat.com/documentation/en-US/RedHatEnterpriseLinux/6/html/ResourceManagementGuide/sec-RelationshipsBetweenSubsystemsHierarchiesControlGroupsandTasks.html]}。
-
规则1: 同一个hierarchy可以附加一个或多个subsystem。如下图1,cpu和memory的subsystem附加到了一个hierarchy。
-
图1 同一个hierarchy可以附加一个或多个subsystem
-
规则2: 一个subsystem可以附加到多个hierarchy,当且仅当这些hierarchy只有这唯一一个subsystem。如下图2,小圈中的数字表示subsystem附加的时间顺序,CPU subsystem附加到hierarchy A的同时不能再附加到hierarchy B,因为hierarchy B已经附加了memory subsystem。如果hierarchy B与hierarchy A状态相同,没有附加过memory subsystem,那么CPU subsystem同时附加到两个hierarchy是可以的。
图2 一个已经附加在某个hierarchy上的subsystem不能附加到其他含有别的subsystem的hierarchy上
规则3: 系统每次新建一个hierarchy时,该系统上的所有task默认构成了这个新建的hierarchy的初始化cgroup,这个cgroup也称为root cgroup。对于你创建的每个hierarchy,task只能存在于其中一个cgroup中,即一个task不能存在于同一个hierarchy的不同cgroup中,但是一个task可以存在在不同hierarchy中的多个cgroup中。如果操作时把一个task添加到同一个hierarchy中的另一个cgroup中,则会从第一个cgroup中移除。在下图3中可以看到,
httpd
进程已经加入到hierarchy A中的/cg1
而不能加入同一个hierarchy中的/cg2
,但是可以加入hierarchy B中的/cg3
。实际上不允许加入同一个hierarchy中的其他cgroup野生为了防止出现矛盾,如CPU subsystem为/cg1
分配了30%,而为/cg2
分配了50%,此时如果httpd
在这两个cgroup中,就会出现矛盾。图3 一个task不能属于同一个hierarchy的不同cgroup
规则4: 进程(task)在fork自身时创建的子任务(child task)默认与原task在同一个cgroup中,但是child task允许被移动到不同的cgroup中。即fork完成后,父子进程间是完全独立的。如下图4中,小圈中的数字表示task 出现的时间顺序,当
httpd
刚fork出另一个httpd
时,在同一个hierarchy中的同一个cgroup中。但是随后如果PID为4840的httpd
需要移动到其他cgroup也是可以的,因为父子任务间已经独立。总结起来就是:初始化时子任务与父任务在同一个cgroup,但是这种关系随后可以改变。图4 刚fork出的子进程在初始状态与其父进程处于同一个cgroup
5. subsystem简介
subsystem实际上就是cgroups的资源控制系统,每种subsystem独立地控制一种资源,目前Docker使用如下八种subsystem,还有一种
net_cls
subsystem在内核中已经广泛实现,但是Docker尚未使用。他们的用途分别如下。- blkio: 这个subsystem可以为块设备设定输入/输出限制,比如物理驱动设备(包括磁盘、固态硬盘、USB等)。
- cpu: 这个subsystem使用调度程序控制task对CPU的使用。
- cpuacct: 这个subsystem自动生成cgroup中task对CPU资源使用情况的报告。
- cpuset: 这个subsystem可以为cgroup中的task分配独立的CPU(此处针对多处理器系统)和内存。
- devices 这个subsystem可以开启或关闭cgroup中task对设备的访问。
- freezer 这个subsystem可以挂起或恢复cgroup中的task。
- memory 这个subsystem可以设定cgroup中task对内存使用量的限定,并且自动生成这些task对内存资源使用情况的报告。
- perfevent 这个subsystem使用后使得cgroup中的task可以进行统一的性能测试。{![perf: Linux CPU性能探测器,详见https://perf.wiki.kernel.org/index.php/MainPage]}
- *net_cls 这个subsystem Docker没有直接使用,它通过使用等级识别符(classid)标记网络数据包,从而允许 Linux 流量控制程序(TC:Traffic Controller)识别从具体cgroup中生成的数据包。
6. cgroups实现方式及工作原理简介
(1)cgroups实现结构讲解
cgroups的实现本质上是给系统进程挂上钩子(hooks),当task运行的过程中涉及到某个资源时就会触发钩子上所附带的subsystem进行检测,最终根据资源类别的不同使用对应的技术进行资源限制和优先级分配。那么这些钩子又是怎样附加到进程上的呢?下面我们将对照结构体的图表一步步分析,请放心,描述代码的内容并不多。
(点击放大图像)
图5 cgroups相关结构体一览
-
稍后阅读
-
我的阅读清单
上一篇中,我们了解了Docker背后使用的资源隔离技术namespace,通过系统调用构建一个相对隔离的shell环境,也可以称之为一个简单的“容器”。本文我们则要开始讲解另一个强大的内核工具——cgroups。他不仅可以限制被namespace隔离起来的资源,还可以为资源设置权重、计算使用量、操控进程启停等等。在介绍完基本概念后,我们将详细讲解Docker中使用到的cgroups内容。希望通过本文,让读者对Docker有更深入的了解。
1. cgroups是什么
cgroups(Control Groups)最初叫Process Container,由Google工程师(Paul Menage和Rohit Seth)于2006年提出,后来因为Container有多重含义容易引起误解,就在2007年更名为Control Groups,并被整合进Linux内核。顾名思义就是把进程放到一个组里面统一加以控制。官方的定义如下{![引自:https://www.kernel.org/doc/Documentation/cgroups/cgroups.txt]}。
cgroups是Linux内核提供的一种机制,这种机制可以根据特定的行为,把一系列系统任务及其子任务整合(或分隔)到按资源划分等级的不同组内,从而为系统资源管理提供一个统一的框架。
通俗的来说,cgroups可以限制、记录、隔离进程组所使用的物理资源(包括:CPU、memory、IO等),为容器实现虚拟化提供了基本保证,是构建Docker等一系列虚拟化管理工具的基石。
对开发者来说,cgroups有如下四个有趣的特点:
- cgroups的API以一个伪文件系统的方式实现,即用户可以通过文件操作实现cgroups的组织管理。
- cgroups的组织管理操作单元可以细粒度到线程级别,用户态代码也可以针对系统分配的资源创建和销毁cgroups,从而实现资源再分配和管理。
- 所有资源管理的功能都以“subsystem(子系统)”的方式实现,接口统一。
- 子进程创建之初与其父进程处于同一个cgroups的控制组。
本质上来说,cgroups是内核附加在程序上的一系列钩子(hooks),通过程序运行时对资源的调度触发相应的钩子以达到资源追踪和限制的目的。
2. cgroups的作用
实现cgroups的主要目的是为不同用户层面的资源管理,提供一个统一化的接口。从单个进程的资源控制到操作系统层面的虚拟化。Cgroups提供了以下四大功能{![参照自:http://en.wikipedia.org/wiki/Cgroups]}。
- 资源限制(Resource Limitation):cgroups可以对进程组使用的资源总额进行限制。如设定应用运行时使用内存的上限,一旦超过这个配额就发出OOM(Out of Memory)。
- 优先级分配(Prioritization):通过分配的CPU时间片数量及硬盘IO带宽大小,实际上就相当于控制了进程运行的优先级。
- 资源统计(Accounting): cgroups可以统计系统的资源使用量,如CPU使用时长、内存用量等等,这个功能非常适用于计费。
- 进程控制(Control):cgroups可以对进程组执行挂起、恢复等操作。
过去有一段时间,内核开发者甚至把namespace也作为一个cgroups的subsystem加入进来,也就是说cgroups曾经甚至还包含了资源隔离的能力。但是资源隔离会给cgroups带来许多问题,如PID在循环出现的时候cgroup却出现了命名冲突、cgroup创建后进入新的namespace导致脱离了控制等等{![详见:https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=a77aea92010acf54ad785047234418d5d68772e2]},所以在2011年就被移除了。
3. 术语表
- task(任务):cgroups的术语中,task就表示系统的一个进程。
- cgroup(控制组):cgroups 中的资源控制都以cgroup为单位实现。cgroup表示按某种资源控制标准划分而成的任务组,包含一个或多个子系统。一个任务可以加入某个cgroup,也可以从某个cgroup迁移到另外一个cgroup。
- subsystem(子系统):cgroups中的subsystem就是一个资源调度控制器(Resource Controller)。比如CPU子系统可以控制CPU时间分配,内存子系统可以限制cgroup内存使用量。
- hierarchy(层级树):hierarchy由一系列cgroup以一个树状结构排列而成,每个hierarchy通过绑定对应的subsystem进行资源调度。hierarchy中的cgroup节点可以包含零或多个子节点,子节点继承父节点的属性。整个系统可以有多个hierarchy。
4. 组织结构与基本规则
大家在namespace技术的讲解中已经了解到,传统的Unix进程管理,实际上是先启动
init
进程作为根节点,再由init
节点创建子进程作为子节点,而每个子节点由可以创建新的子节点,如此往复,形成一个树状结构。而cgroups也是类似的树状结构,子节点都从父节点继承属性。它们最大的不同在于,系统中cgroup构成的hierarchy可以允许存在多个。如果进程模型是由
init
作为根节点构成的一棵树的话,那么cgroups的模型则是由多个hierarchy构成的森林。这样做的目的也很好理解,如果只有一个hierarchy,那么所有的task都要受到绑定其上的subsystem的限制,会给那些不需要这些限制的task造成麻烦。了解了cgroups的组织结构,我们再来了解cgroup、task、subsystem以及hierarchy四者间的相互关系及其基本规则{![参照自:https://access.redhat.com/documentation/en-US/RedHatEnterpriseLinux/6/html/ResourceManagementGuide/sec-RelationshipsBetweenSubsystemsHierarchiesControlGroupsandTasks.html]}。
-
规则1: 同一个hierarchy可以附加一个或多个subsystem。如下图1,cpu和memory的subsystem附加到了一个hierarchy。
图1 同一个hierarchy可以附加一个或多个subsystem
-
规则2: 一个subsystem可以附加到多个hierarchy,当且仅当这些hierarchy只有这唯一一个subsystem。如下图2,小圈中的数字表示subsystem附加的时间顺序,CPU subsystem附加到hierarchy A的同时不能再附加到hierarchy B,因为hierarchy B已经附加了memory subsystem。如果hierarchy B与hierarchy A状态相同,没有附加过memory subsystem,那么CPU subsystem同时附加到两个hierarchy是可以的。
图2 一个已经附加在某个hierarchy上的subsystem不能附加到其他含有别的subsystem的hierarchy上
-
规则3: 系统每次新建一个hierarchy时,该系统上的所有task默认构成了这个新建的hierarchy的初始化cgroup,这个cgroup也称为root cgroup。对于你创建的每个hierarchy,task只能存在于其中一个cgroup中,即一个task不能存在于同一个hierarchy的不同cgroup中,但是一个task可以存在在不同hierarchy中的多个cgroup中。如果操作时把一个task添加到同一个hierarchy中的另一个cgroup中,则会从第一个cgroup中移除。在下图3中可以看到,
httpd
进程已经加入到hierarchy A中的/cg1
而不能加入同一个hierarchy中的/cg2
,但是可以加入hierarchy B中的/cg3
。实际上不允许加入同一个hierarchy中的其他cgroup野生为了防止出现矛盾,如CPU subsystem为/cg1
分配了30%,而为/cg2
分配了50%,此时如果httpd
在这两个cgroup中,就会出现矛盾。图3 一个task不能属于同一个hierarchy的不同cgroup
-
规则4: 进程(task)在fork自身时创建的子任务(child task)默认与原task在同一个cgroup中,但是child task允许被移动到不同的cgroup中。即fork完成后,父子进程间是完全独立的。如下图4中,小圈中的数字表示task 出现的时间顺序,当
httpd
刚fork出另一个httpd
时,在同一个hierarchy中的同一个cgroup中。但是随后如果PID为4840的httpd
需要移动到其他cgroup也是可以的,因为父子任务间已经独立。总结起来就是:初始化时子任务与父任务在同一个cgroup,但是这种关系随后可以改变。图4 刚fork出的子进程在初始状态与其父进程处于同一个cgroup
5. subsystem简介
subsystem实际上就是cgroups的资源控制系统,每种subsystem独立地控制一种资源,目前Docker使用如下八种subsystem,还有一种
net_cls
subsystem在内核中已经广泛实现,但是Docker尚未使用。他们的用途分别如下。- blkio: 这个subsystem可以为块设备设定输入/输出限制,比如物理驱动设备(包括磁盘、固态硬盘、USB等)。
- cpu: 这个subsystem使用调度程序控制task对CPU的使用。
- cpuacct: 这个subsystem自动生成cgroup中task对CPU资源使用情况的报告。
- cpuset: 这个subsystem可以为cgroup中的task分配独立的CPU(此处针对多处理器系统)和内存。
- devices 这个subsystem可以开启或关闭cgroup中task对设备的访问。
- freezer 这个subsystem可以挂起或恢复cgroup中的task。
- memory 这个subsystem可以设定cgroup中task对内存使用量的限定,并且自动生成这些task对内存资源使用情况的报告。
- perfevent 这个subsystem使用后使得cgroup中的task可以进行统一的性能测试。{![perf: Linux CPU性能探测器,详见https://perf.wiki.kernel.org/index.php/MainPage]}
- *net_cls 这个subsystem Docker没有直接使用,它通过使用等级识别符(classid)标记网络数据包,从而允许 Linux 流量控制程序(TC:Traffic Controller)识别从具体cgroup中生成的数据包。
6. cgroups实现方式及工作原理简介
(1)cgroups实现结构讲解
cgroups的实现本质上是给系统进程挂上钩子(hooks),当task运行的过程中涉及到某个资源时就会触发钩子上所附带的subsystem进行检测,最终根据资源类别的不同使用对应的技术进行资源限制和优先级分配。那么这些钩子又是怎样附加到进程上的呢?下面我们将对照结构体的图表一步步分析,请放心,描述代码的内容并不多。
(点击放大图像)
图5 cgroups相关结构体一览
Linux中管理task进程的数据结构为
task_struct
(包含所有进程管理的信息),其中与cgroup相关的字段主要有两个,一个是css_set *cgroups
,表示指向css_set
(包含进程相关的cgroups信息)的指针,一个task只对应一个css_set
结构,但是一个css_set
可以被多个task使用。另一个字段是list_head cg_list
,是一个链表的头指针,这个链表包含了所有的链到同一个css_set
的task进程(在图中使用的回环箭头,均表示可以通过该字段找到所有同类结构,获得信息)。每个
css_set
结构中都包含了一个指向cgroup_subsys_state
(包含进程与一个特定子系统相关的信息)的指针数组。cgroup_subsys_state
则指向了cgroup
结构(包含一个cgroup的所有信息),通过这种方式间接的把一个进程和cgroup联系了起来,如下图6。图6 从task结构开始找到cgroup结构
另一方面,
cgroup
结构体中有一个list_head css_sets
字段,它是一个头指针,指向由cg_cgroup_link
(包含cgroup与task之间多对多关系的信息,后文还会再解释)形成的链表。由此获得的每一个cg_cgroup_link
都包含了一个指向css_set *cg
字段,指向了每一个task的css_set
。css_set
结构中则包含tasks
头指针,指向所有链到此css_set
的task进程构成的链表。至此,我们就明白如何查看在同一个cgroup中的task有哪些了,如下图7。图7 cglink多对多双向查询
细心的读者可能已经发现,
css_set
中也有指向所有cg_cgroup_link
构成链表的头指针,通过这种方式也能定位到所有的cgroup,这种方式与图1中所示的方式得到的结果是相同的。那么为什么要使用
cg_cgroup_link
结构体呢?因为task与cgroup之间是多对多的关系。熟悉数据库的读者很容易理解,在数据库中,如果两张表是多对多的关系,那么如果不加入第三张关系表,就必须为一个字段的不同添加许多行记录,导致大量冗余。通过从主表和副表各拿一个主键新建一张关系表,可以提高数据查询的灵活性和效率。而一个task可能处于不同的cgroup,只要这些cgroup在不同的hierarchy中,并且每个hierarchy挂载的子系统不同;另一方面,一个cgroup中可以有多个task,这是显而易见的,但是这些task因为可能还存在在别的cgroup中,所以它们对应的
css_set
也不尽相同,所以一个cgroup也可以对应多个·css_set
。在系统运行之初,内核的主函数就会对
root cgroups
和css_set
进行初始化,每次task进行fork/exit时,都会附加(attach)/分离(detach)对应的css_set
。综上所述,添加
cg_cgroup_link
主要是出于性能方面的考虑,一是节省了task_struct
结构体占用的内存,二是提升了进程fork()/exit()
的速度。图8 css_set与hashtable关系
-
稍后阅读
-
我的阅读清单
上一篇中,我们了解了Docker背后使用的资源隔离技术namespace,通过系统调用构建一个相对隔离的shell环境,也可以称之为一个简单的“容器”。本文我们则要开始讲解另一个强大的内核工具——cgroups。他不仅可以限制被namespace隔离起来的资源,还可以为资源设置权重、计算使用量、操控进程启停等等。在介绍完基本概念后,我们将详细讲解Docker中使用到的cgroups内容。希望通过本文,让读者对Docker有更深入的了解。
1. cgroups是什么
cgroups(Control Groups)最初叫Process Container,由Google工程师(Paul Menage和Rohit Seth)于2006年提出,后来因为Container有多重含义容易引起误解,就在2007年更名为Control Groups,并被整合进Linux内核。顾名思义就是把进程放到一个组里面统一加以控制。官方的定义如下{![引自:https://www.kernel.org/doc/Documentation/cgroups/cgroups.txt]}。
cgroups是Linux内核提供的一种机制,这种机制可以根据特定的行为,把一系列系统任务及其子任务整合(或分隔)到按资源划分等级的不同组内,从而为系统资源管理提供一个统一的框架。
通俗的来说,cgroups可以限制、记录、隔离进程组所使用的物理资源(包括:CPU、memory、IO等),为容器实现虚拟化提供了基本保证,是构建Docker等一系列虚拟化管理工具的基石。
对开发者来说,cgroups有如下四个有趣的特点:
- cgroups的API以一个伪文件系统的方式实现,即用户可以通过文件操作实现cgroups的组织管理。
- cgroups的组织管理操作单元可以细粒度到线程级别,用户态代码也可以针对系统分配的资源创建和销毁cgroups,从而实现资源再分配和管理。
- 所有资源管理的功能都以“subsystem(子系统)”的方式实现,接口统一。
- 子进程创建之初与其父进程处于同一个cgroups的控制组。
本质上来说,cgroups是内核附加在程序上的一系列钩子(hooks),通过程序运行时对资源的调度触发相应的钩子以达到资源追踪和限制的目的。
2. cgroups的作用
实现cgroups的主要目的是为不同用户层面的资源管理,提供一个统一化的接口。从单个进程的资源控制到操作系统层面的虚拟化。Cgroups提供了以下四大功能{![参照自:http://en.wikipedia.org/wiki/Cgroups]}。
- 资源限制(Resource Limitation):cgroups可以对进程组使用的资源总额进行限制。如设定应用运行时使用内存的上限,一旦超过这个配额就发出OOM(Out of Memory)。
- 优先级分配(Prioritization):通过分配的CPU时间片数量及硬盘IO带宽大小,实际上就相当于控制了进程运行的优先级。
- 资源统计(Accounting): cgroups可以统计系统的资源使用量,如CPU使用时长、内存用量等等,这个功能非常适用于计费。
- 进程控制(Control):cgroups可以对进程组执行挂起、恢复等操作。
过去有一段时间,内核开发者甚至把namespace也作为一个cgroups的subsystem加入进来,也就是说cgroups曾经甚至还包含了资源隔离的能力。但是资源隔离会给cgroups带来许多问题,如PID在循环出现的时候cgroup却出现了命名冲突、cgroup创建后进入新的namespace导致脱离了控制等等{![详见:https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=a77aea92010acf54ad785047234418d5d68772e2]},所以在2011年就被移除了。
3. 术语表
- task(任务):cgroups的术语中,task就表示系统的一个进程。
- cgroup(控制组):cgroups 中的资源控制都以cgroup为单位实现。cgroup表示按某种资源控制标准划分而成的任务组,包含一个或多个子系统。一个任务可以加入某个cgroup,也可以从某个cgroup迁移到另外一个cgroup。
- subsystem(子系统):cgroups中的subsystem就是一个资源调度控制器(Resource Controller)。比如CPU子系统可以控制CPU时间分配,内存子系统可以限制cgroup内存使用量。
- hierarchy(层级树):hierarchy由一系列cgroup以一个树状结构排列而成,每个hierarchy通过绑定对应的subsystem进行资源调度。hierarchy中的cgroup节点可以包含零或多个子节点,子节点继承父节点的属性。整个系统可以有多个hierarchy。
4. 组织结构与基本规则
大家在namespace技术的讲解中已经了解到,传统的Unix进程管理,实际上是先启动
init
进程作为根节点,再由init
节点创建子进程作为子节点,而每个子节点由可以创建新的子节点,如此往复,形成一个树状结构。而cgroups也是类似的树状结构,子节点都从父节点继承属性。它们最大的不同在于,系统中cgroup构成的hierarchy可以允许存在多个。如果进程模型是由
init
作为根节点构成的一棵树的话,那么cgroups的模型则是由多个hierarchy构成的森林。这样做的目的也很好理解,如果只有一个hierarchy,那么所有的task都要受到绑定其上的subsystem的限制,会给那些不需要这些限制的task造成麻烦。了解了cgroups的组织结构,我们再来了解cgroup、task、subsystem以及hierarchy四者间的相互关系及其基本规则{![参照自:https://access.redhat.com/documentation/en-US/RedHatEnterpriseLinux/6/html/ResourceManagementGuide/sec-RelationshipsBetweenSubsystemsHierarchiesControlGroupsandTasks.html]}。
-
规则1: 同一个hierarchy可以附加一个或多个subsystem。如下图1,cpu和memory的subsystem附加到了一个hierarchy。
图1 同一个hierarchy可以附加一个或多个subsystem
-
规则2: 一个subsystem可以附加到多个hierarchy,当且仅当这些hierarchy只有这唯一一个subsystem。如下图2,小圈中的数字表示subsystem附加的时间顺序,CPU subsystem附加到hierarchy A的同时不能再附加到hierarchy B,因为hierarchy B已经附加了memory subsystem。如果hierarchy B与hierarchy A状态相同,没有附加过memory subsystem,那么CPU subsystem同时附加到两个hierarchy是可以的。
图2 一个已经附加在某个hierarchy上的subsystem不能附加到其他含有别的subsystem的hierarchy上
-
规则3: 系统每次新建一个hierarchy时,该系统上的所有task默认构成了这个新建的hierarchy的初始化cgroup,这个cgroup也称为root cgroup。对于你创建的每个hierarchy,task只能存在于其中一个cgroup中,即一个task不能存在于同一个hierarchy的不同cgroup中,但是一个task可以存在在不同hierarchy中的多个cgroup中。如果操作时把一个task添加到同一个hierarchy中的另一个cgroup中,则会从第一个cgroup中移除。在下图3中可以看到,
httpd
进程已经加入到hierarchy A中的/cg1
而不能加入同一个hierarchy中的/cg2
,但是可以加入hierarchy B中的/cg3
。实际上不允许加入同一个hierarchy中的其他cgroup野生为了防止出现矛盾,如CPU subsystem为/cg1
分配了30%,而为/cg2
分配了50%,此时如果httpd
在这两个cgroup中,就会出现矛盾。图3 一个task不能属于同一个hierarchy的不同cgroup
-
规则4: 进程(task)在fork自身时创建的子任务(child task)默认与原task在同一个cgroup中,但是child task允许被移动到不同的cgroup中。即fork完成后,父子进程间是完全独立的。如下图4中,小圈中的数字表示task 出现的时间顺序,当
httpd
刚fork出另一个httpd
时,在同一个hierarchy中的同一个cgroup中。但是随后如果PID为4840的httpd
需要移动到其他cgroup也是可以的,因为父子任务间已经独立。总结起来就是:初始化时子任务与父任务在同一个cgroup,但是这种关系随后可以改变。图4 刚fork出的子进程在初始状态与其父进程处于同一个cgroup
5. subsystem简介
subsystem实际上就是cgroups的资源控制系统,每种subsystem独立地控制一种资源,目前Docker使用如下八种subsystem,还有一种
net_cls
subsystem在内核中已经广泛实现,但是Docker尚未使用。他们的用途分别如下。- blkio: 这个subsystem可以为块设备设定输入/输出限制,比如物理驱动设备(包括磁盘、固态硬盘、USB等)。
- cpu: 这个subsystem使用调度程序控制task对CPU的使用。
- cpuacct: 这个subsystem自动生成cgroup中task对CPU资源使用情况的报告。
- cpuset: 这个subsystem可以为cgroup中的task分配独立的CPU(此处针对多处理器系统)和内存。
- devices 这个subsystem可以开启或关闭cgroup中task对设备的访问。
- freezer 这个subsystem可以挂起或恢复cgroup中的task。
- memory 这个subsystem可以设定cgroup中task对内存使用量的限定,并且自动生成这些task对内存资源使用情况的报告。
- perfevent 这个subsystem使用后使得cgroup中的task可以进行统一的性能测试。{![perf: Linux CPU性能探测器,详见https://perf.wiki.kernel.org/index.php/MainPage]}
- *net_cls 这个subsystem Docker没有直接使用,它通过使用等级识别符(classid)标记网络数据包,从而允许 Linux 流量控制程序(TC:Traffic Controller)识别从具体cgroup中生成的数据包。
6. cgroups实现方式及工作原理简介
(1)cgroups实现结构讲解
cgroups的实现本质上是给系统进程挂上钩子(hooks),当task运行的过程中涉及到某个资源时就会触发钩子上所附带的subsystem进行检测,最终根据资源类别的不同使用对应的技术进行资源限制和优先级分配。那么这些钩子又是怎样附加到进程上的呢?下面我们将对照结构体的图表一步步分析,请放心,描述代码的内容并不多。
(点击放大图像)
图5 cgroups相关结构体一览
Linux中管理task进程的数据结构为
task_struct
(包含所有进程管理的信息),其中与cgroup相关的字段主要有两个,一个是css_set *cgroups
,表示指向css_set
(包含进程相关的cgroups信息)的指针,一个task只对应一个css_set
结构,但是一个css_set
可以被多个task使用。另一个字段是list_head cg_list
,是一个链表的头指针,这个链表包含了所有的链到同一个css_set
的task进程(在图中使用的回环箭头,均表示可以通过该字段找到所有同类结构,获得信息)。每个
css_set
结构中都包含了一个指向cgroup_subsys_state
(包含进程与一个特定子系统相关的信息)的指针数组。cgroup_subsys_state
则指向了cgroup
结构(包含一个cgroup的所有信息),通过这种方式间接的把一个进程和cgroup联系了起来,如下图6。图6 从task结构开始找到cgroup结构
另一方面,
cgroup
结构体中有一个list_head css_sets
字段,它是一个头指针,指向由cg_cgroup_link
(包含cgroup与task之间多对多关系的信息,后文还会再解释)形成的链表。由此获得的每一个cg_cgroup_link
都包含了一个指向css_set *cg
字段,指向了每一个task的css_set
。css_set
结构中则包含tasks
头指针,指向所有链到此css_set
的task进程构成的链表。至此,我们就明白如何查看在同一个cgroup中的task有哪些了,如下图7。图7 cglink多对多双向查询
细心的读者可能已经发现,
css_set
中也有指向所有cg_cgroup_link
构成链表的头指针,通过这种方式也能定位到所有的cgroup,这种方式与图1中所示的方式得到的结果是相同的。那么为什么要使用
cg_cgroup_link
结构体呢?因为task与cgroup之间是多对多的关系。熟悉数据库的读者很容易理解,在数据库中,如果两张表是多对多的关系,那么如果不加入第三张关系表,就必须为一个字段的不同添加许多行记录,导致大量冗余。通过从主表和副表各拿一个主键新建一张关系表,可以提高数据查询的灵活性和效率。而一个task可能处于不同的cgroup,只要这些cgroup在不同的hierarchy中,并且每个hierarchy挂载的子系统不同;另一方面,一个cgroup中可以有多个task,这是显而易见的,但是这些task因为可能还存在在别的cgroup中,所以它们对应的
css_set
也不尽相同,所以一个cgroup也可以对应多个·css_set
。在系统运行之初,内核的主函数就会对
root cgroups
和css_set
进行初始化,每次task进行fork/exit时,都会附加(attach)/分离(detach)对应的css_set
。综上所述,添加
cg_cgroup_link
主要是出于性能方面的考虑,一是节省了task_struct
结构体占用的内存,二是提升了进程fork()/exit()
的速度。图8 css_set与hashtable关系
当task从一个cgroup中移动到另一个时,它会得到一个新的
css_set
指针。如果所要加入的cgroup与现有的cgroup子系统相同,那么就重复使用现有的css_set
,否则就分配一个新css_set
。所有的css_set
通过一个哈希表进行存放和查询,如上图8中所示,hlist_node hlist
就指向了css_set_table
这个hash表。同时,为了让cgroups便于用户理解和使用,也为了用精简的内核代码为cgroup提供熟悉的权限和命名空间管理,内核开发者们按照Linux 虚拟文件系统转换器(VFS:Virtual Filesystem Switch)的接口实现了一套名为
cgroup
的文件系统,非常巧妙地用来表示cgroups的hierarchy概念,把各个subsystem的实现都封装到文件系统的各项操作中。有兴趣的读者可以在网上搜索并阅读VFS的相关内容,在此就不赘述了。定义子系统的结构体是
cgroup_subsys
,在图9中可以看到,cgroup_subsys
中定义了一组函数的接口,让各个子系统自己去实现,类似的思想还被用在了cgroup_subsys_state
中,cgroup_subsys_state
并没有定义控制信息,只是定义了各个子系统都需要用到的公共信息,由各个子系统各自按需去定义自己的控制信息结构体,最终在自定义的结构体中把cgroup_subsys_state
包含进去,然后内核通过container_of
(这个宏可以通过一个结构体的成员找到结构体自身)等宏定义来获取对应的结构体。图9 cgroup子系统结构体
(2)基于cgroups实现结构的用户层体现
了解了cgroups实现的代码结构以后,再来看用户层在使用cgroups时的限制,会更加清晰。
在实际的使用过程中,你需要通过挂载(mount)
cgroup
文件系统新建一个层级结构,挂载时指定要绑定的子系统,缺省情况下默认绑定系统所有子系统。把cgroup文件系统挂载(mount)上以后,你就可以像操作文件一样对cgroups的hierarchy层级进行浏览和操作管理(包括权限管理、子文件管理等等)。除了cgroup文件系统以外,内核没有为cgroups的访问和操作添加任何系统调用。如果新建的层级结构要绑定的子系统与目前已经存在的层级结构完全相同,那么新的挂载会重用原来已经存在的那一套(指向相同的css_set)。否则如果要绑定的子系统已经被别的层级绑定,就会返回挂载失败的错误。如果一切顺利,挂载完成后层级就被激活并与相应子系统关联起来,可以开始使用了。
目前无法将一个新的子系统绑定到激活的层级上,或者从一个激活的层级中解除某个子系统的绑定。
当一个顶层的cgroup文件系统被卸载(umount)时,如果其中创建后代cgroup目录,那么就算上层的cgroup被卸载了,层级也是激活状态,其后代cgoup中的配置依旧有效。只有递归式的卸载层级中的所有cgoup,那个层级才会被真正删除。
层级激活后,
/proc
目录下的每个task PID文件夹下都会新添加一个名为cgroup
的文件,列出task所在的层级,对其进行控制的子系统及对应cgroup文件系统的路径。一个cgroup创建完成,不管绑定了何种子系统,其目录下都会生成以下几个文件,用来描述cgroup的相应信息。同样,把相应信息写入这些配置文件就可以生效,内容如下。
-
tasks
:这个文件中罗列了所有在该cgroup中task的PID。该文件并不保证task的PID有序,把一个task的PID写到这个文件中就意味着把这个task加入这个cgroup中。 -
cgroup.procs
:这个文件罗列所有在该cgroup中的线程组ID。该文件并不保证线程组ID有序和无重复。写一个线程组ID到这个文件就意味着把这个组中所有的线程加到这个cgroup中。 -
notify_on_release
:填0或1,表示是否在cgroup中最后一个task退出时通知运行release agent
,默认情况下是0,表示不运行。 -
release_agent
:指定release agent执行脚本的文件路径(该文件在最顶层cgroup目录中存在),在这个脚本通常用于自动化umount
无用的cgroup。
除了上述几个通用的文件以外,绑定特定子系统的目录下也会有其他的文件进行子系统的参数配置。
在创建的hierarchy中创建文件夹,就类似于fork中一个后代cgroup,后代cgroup中默认继承原有cgroup中的配置属性,但是你可以根据需求对配置参数进行调整。这样就把一个大的cgroup系统分割成一个个嵌套的、可动态变化的“软分区”。
这篇关于linux之cgroups资源限制的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!