HI3861学习笔记(16)——光强度GY-30(BH1750)使用

2023-10-13 06:59

本文主要是介绍HI3861学习笔记(16)——光强度GY-30(BH1750)使用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、简介

BH1750FVI 是一种用于两线式串行总线接口的数字型光强度传感器集成电路。这种集成电路可以根据收集的光线强度数据来调整液晶或者键盘背景灯的亮度。利用它的高分辨率可以探测较大范围的光强度变化。

传感器特点:

  • 支持I2CBUS接口
  • 接近视觉灵敏度的光谱灵敏度特性
  • 输出对应亮度的数字值
  • 对应广泛的输入光范围。(相当于1-65535lx)
  • 通过降低功率功能,实现低电流化。
  • 通过50Hz/60Hz除光噪音功能实现稳定的测定。
  • 支持1.8v逻辑输入接口。
  • 无需其他外部件。
  • 光源依赖性弱。
  • 有两种可选的I2Cslave地址。
  • 可调的测量结果影响较大的因素为光入口大小。
  • 使用这种功能计算1.1lx到100000lx马克斯/分钟的范围。
  • 最小误差变动在±20%。
  • 受红外线影响很小。

1.1 测量程序步骤

1.2 指令集合

1.3 测量模式说明

二、硬件连接

功能口引脚
SCLGPIO0
SDAGPIO1
ADDRADDR ≥ 0.7VCC 从机地址为”1011100“
ADDR ≤ 0.3VCC 从机地址为”0100011“

三、添加I2C驱动

查看 HI3861学习笔记(15)——I2C接口使用

四、I2C通信流程

测量结果为2字节(高字节 High Byte 和低字节 Low Byte)数据,计算公式为:

光照强度(单位lx)=(High Byte  + Low Byte)/ 1.2

五、HI3861作为主机与BH1750光照强度传感器通信

编译时在业务BUILD.gn中包含路径

include_dirs = ["//utils/native/lite/include","//kernel/liteos_m/components/cmsis/2.0","//base/iot_hardware/interfaces/kits/wifiiot_lite",]

连续高分辨率模式

I2C_Init()初始化I2C后

BH1750_Init()配置BH1750连续高分辨率模式

BH1750_ReadLightIntensity()获取光强度

#include <stdio.h>
#include <string.h>
#include <unistd.h>#include "ohos_init.h"
#include "cmsis_os2.h"
#include "wifiiot_errno.h"
#include "wifiiot_gpio.h"
#include "wifiiot_gpio_ex.h"
#include "wifiiot_i2c.h"
#include "wifiiot_i2c_ex.h"#define I2C_TASK_STACK_SIZE 1024 * 8
#define I2C_TASK_PRIO 25#define WRITE_BIT           0x00
#define READ_BIT            0x01#define BH1750_SLAVE_ADDR   0x23 // 从机地址
#define BH1750_PWR_DOWN     0x00 // 关闭模块
#define BH1750_PWR_ON       0x01 // 打开模块等待测量指令
#define BH1750_RST          0x07 // 重置数据寄存器值在PowerOn模式下有效
#define BH1750_CON_H        0x10 // 连续高分辨率模式,1lx,120ms
#define BH1750_CON_H2       0x11 // 连续高分辨率模式,0.5lx,120ms
#define BH1750_CON_L        0x13 // 连续低分辨率模式,4lx,16ms
#define BH1750_ONE_H        0x20 // 一次高分辨率模式,1lx,120ms,测量后模块转到PowerDown模式
#define BH1750_ONE_H2       0x21 // 一次高分辨率模式,0.5lx,120ms,测量后模块转到PowerDown模式
#define BH1750_ONE_L        0x23 // 一次低分辨率模式,4lx,16ms,测量后模块转到PowerDown模式/**@brief I2C驱动初始化@param 无@return 无
*/
void I2C_Init(void)
{GpioInit();//GPIO_0复用为I2C1_SDAIoSetFunc(WIFI_IOT_IO_NAME_GPIO_0, WIFI_IOT_IO_FUNC_GPIO_0_I2C1_SDA);//GPIO_1复用为I2C1_SCLIoSetFunc(WIFI_IOT_IO_NAME_GPIO_1, WIFI_IOT_IO_FUNC_GPIO_1_I2C1_SCL);//baudrate: 400kbpsI2cInit(WIFI_IOT_I2C_IDX_1, 400000);
}/**@brief I2C写数据函数@param slaveAddr -[in] 从设备地址@param regAddr -[in] 寄存器地址@param pData -[in] 写入数据@param dataLen -[in] 写入数据长度@return 错误码
*/
int I2C_WriteData(uint8_t slaveAddr, uint8_t regAddr, uint8_t *pData, uint16_t dataLen)
{int ret;WifiIotI2cData i2c_data = {0};if(0 != regAddr){i2c_data.sendBuf = &regAddr;i2c_data.sendLen = 1;ret = I2cWrite(WIFI_IOT_I2C_IDX_1, (slaveAddr << 1) | WRITE_BIT, &i2c_data);if(ret != 0){printf("===== Error: I2C write status1 = 0x%x! =====\r\n", ret);return 0;}}i2c_data.sendBuf = pData;i2c_data.sendLen = dataLen;ret = I2cWrite(WIFI_IOT_I2C_IDX_1, (slaveAddr << 1) | WRITE_BIT, &i2c_data);if(ret != 0){printf("===== Error: I2C write status1 = 0x%x! =====\r\n", ret);return 0;}return 1;
}/**@brief I2C读数据函数@param slaveAddr -[in] 从设备地址@param regAddr -[in] 寄存器地址@param pData -[in] 读出数据@param dataLen -[in] 读出数据长度@return 错误码
*/
int I2C_ReadData(uint8_t slaveAddr, uint8_t regAddr, uint8_t *pData, uint16_t dataLen)
{int ret;WifiIotI2cData i2c_data = {0};if(0 != regAddr){i2c_data.sendBuf = &regAddr;i2c_data.sendLen = 1;ret = I2cWrite(WIFI_IOT_I2C_IDX_1, (slaveAddr << 1) | WRITE_BIT, &i2c_data);if(ret != 0){printf("===== Error: I2C write status = 0x%x! =====\r\n", ret);return 0;}}i2c_data.receiveBuf = pData;i2c_data.receiveLen = dataLen;ret = I2cRead(WIFI_IOT_I2C_IDX_1, (slaveAddr << 1) | READ_BIT, &i2c_data);if(ret != 0){printf("===== Error: I2C read status = 0x%x! =====\r\n", ret);return 0;}return 1;
}/**@brief BH1750初始化函数@param 无@return 无
*/
void BH1750_Init(void)
{uint8_t data;data = BH1750_PWR_ON;              // 发送启动命令I2C_WriteData(BH1750_SLAVE_ADDR, 0, &data, 1);data = BH1750_CON_H;               // 设置连续高分辨率模式,1lx,120msI2C_WriteData(BH1750_SLAVE_ADDR, 0, &data, 1);
}/**@brief BH1750获取光强度@param 无@return 光强度
*/
float BH1750_ReadLightIntensity(void)
{float lux = 0.0;uint8_t sensorData[2] = {0};I2C_ReadData(BH1750_SLAVE_ADDR, 0, sensorData, 2);lux = (sensorData[0] << 8 | sensorData[1]) / 1.2;return lux;
}static void I2CTask(void)
{int cnt = 0;float lux;I2C_Init();BH1750_Init();usleep(180000);                     // 设置完成后要有一段延迟while (1){printf("test cnt: %d", cnt++);lux = BH1750_ReadLightIntensity();printf("sensor val: %.02f [Lux]\n", lux);usleep(1000000);}
}static void I2CExampleEntry(void)
{osThreadAttr_t attr;attr.name = "I2CTask";attr.attr_bits = 0U;attr.cb_mem = NULL;attr.cb_size = 0U;attr.stack_mem = NULL;attr.stack_size = I2C_TASK_STACK_SIZE;attr.priority = I2C_TASK_PRIO;if (osThreadNew((osThreadFunc_t)I2CTask, NULL, &attr) == NULL){printf("Falied to create I2CTask!\n");}
}APP_FEATURE_INIT(I2CExampleEntry);

查看打印:


• 由 Leung 写于 2021 年 10 月 10 日

• 参考:BH1750FVI光强度传感器及其STM32驱动程序
    BH1750 STM32 驱动程序
    BearPi-HM_Nano开发板传感器驱动开发——E53_SC1读取光照强度

这篇关于HI3861学习笔记(16)——光强度GY-30(BH1750)使用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/201543

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

中文分词jieba库的使用与实景应用(一)

知识星球:https://articles.zsxq.com/id_fxvgc803qmr2.html 目录 一.定义: 精确模式(默认模式): 全模式: 搜索引擎模式: paddle 模式(基于深度学习的分词模式): 二 自定义词典 三.文本解析   调整词出现的频率 四. 关键词提取 A. 基于TF-IDF算法的关键词提取 B. 基于TextRank算法的关键词提取

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

Hadoop数据压缩使用介绍

一、压缩原则 (1)运算密集型的Job,少用压缩 (2)IO密集型的Job,多用压缩 二、压缩算法比较 三、压缩位置选择 四、压缩参数配置 1)为了支持多种压缩/解压缩算法,Hadoop引入了编码/解码器 2)要在Hadoop中启用压缩,可以配置如下参数

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

Makefile简明使用教程

文章目录 规则makefile文件的基本语法:加在命令前的特殊符号:.PHONY伪目标: Makefilev1 直观写法v2 加上中间过程v3 伪目标v4 变量 make 选项-f-n-C Make 是一种流行的构建工具,常用于将源代码转换成可执行文件或者其他形式的输出文件(如库文件、文档等)。Make 可以自动化地执行编译、链接等一系列操作。 规则 makefile文件

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

pdfmake生成pdf的使用

实际项目中有时会有根据填写的表单数据或者其他格式的数据,将数据自动填充到pdf文件中根据固定模板生成pdf文件的需求 文章目录 利用pdfmake生成pdf文件1.下载安装pdfmake第三方包2.封装生成pdf文件的共用配置3.生成pdf文件的文件模板内容4.调用方法生成pdf 利用pdfmake生成pdf文件 1.下载安装pdfmake第三方包 npm i pdfma