运行库:变长(可变)参数原理

2023-10-12 22:38
文章标签 参数 原理 可变 运行库

本文主要是介绍运行库:变长(可变)参数原理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

任何C语言程序要想能够得到运行,都离不开背后的一套庞大的代码来进行支持,这一套语言相关的代码便是C语言运行库CRT(C Runtime Library),某种意义上运行库可以看成是C语言的程序和不同操作系统之间的抽象层。一个C语言运行库大致包含了以下功能:
/1.启动初始化与退出清理:包括入口函数及入口函数所依赖的其他函数集合;
/2.标准函数:由C语言标准规定的C语言标准库所拥有的函数实现,如本文将讨论的printf函数(不同平台上向标准输出设备显示字符串的底层实现略有不同,但是C语言提供了printf()函数,并规定了使用方法,由运行库的平台相关部分负责具体的实现);
/3.I/O:I/O功能的封装和实现(文件句柄的初始化和管理);
/4.堆的初始化;
/5.语言实现:语言中一些特殊功能的实现;
/6.调试:实现调试功能的代码。

初期C语言从AT&T实验室诞生,到得以广泛推广的中间存在着一段混乱时期,那时ANSI并没有介入C语言标准,导致彼时存在诸多操作系统的年代,不同系统上的C语言运行库(主要是基础函数库和一些自定义的特殊实现)千差万别。后来ANSI标准协会于1989年介入,正式推出C89语言标准,由C89规定的C语言基础函数库便是就此被称为ANSI C标准运行库。

ANSI C语言标准库STL含有24个头文件规定的基础函数集合,非常轻量级,仅仅包括数学函数、字符串处理和I/O处理等基础(标准输入输出stdlib.h,文件操作stdio.h、字符操作ctype.h、string.h、math.h、time.h、assert.h等),这其中最有意思的无意是变长参数的实现库stdarg.h。下面通过变长参数最为经典的使用场景int printf(const char* format, …)的实现过程来讲述变长参数的奇妙之处。

变长参数
/*
如此的声明表明,printf函数处理第一参数类型为const char*之外,
其后可以追加任意数量、任意类型的参数。
*/
int  printf(const char* format, ⋯);va_list ap; //va_list类型实际是一指针,因为类型不明,因此以void* 和char*
//初始化为最佳。该变量以后将会依次指向各个可变参数。/*
在函数的实现部分,可以使用stdarg.h里的多个宏来访问各个额外的参数:假设
lastarg是变长参数函数的最后一个具名参数(例如printf里的format).
ap必须用va_start初始化一次,其中lastarg必须是函数的最后一个具名的参数
*/
va_start(ap,  lasrtarg);//将va_list类型指针va指向第一个不定参数/*
此后,可以通过va_arg宏来获得下一个不定参数(假设已知其类型为type):
*/
type  next = va_arg(ap, type);//va_arg获取当前不定参数的类型和值,并将指针移动到下一个参数/*
marco implementation part...
*/#define va_list char*
#define va_start(ap,arg) ( ap = (va_list)&arg + sizeof(arg) )
#define va_arg(ap, type)  ( *(type*)( (ap+=sizeof(type))-sizeof(type)) )//ap被移向下一个可变参数的起点位置,并且va_arg将返回当前
//可变参数的值,当前被遍历到的参数的类型type都是format中规定的%d这类字符串格式传递进来的。
#define va_end(ap)  ( ap=(va_list)0 ) //在函数结束前,还必须调用宏
//va_end来清理现场,将指针ap置为空指针,防止野指针误用

printf.c

int  fputc(int c, FILE* stream)
{if( fwrite(&c, 1, 1, stream) != 1)return EOF;elsereturn c;
}int fputs(const char* str, FILE* stream)
{int len = strlen(str);if (fwrite(str,1,len, stream) != len)return EOF;elsereturn len;
}#ifndef WIN32
#define va_list  char*
#define va_start(ap,arg) ( ap = (va_list)&arg + sizeof(arg))
#define va_arg(ap, t)    ( *(t*) ( (ap+=sizeof(t)) - sizeof(t) ) )
#define va_end(ap)       ( ap = (va_list) 0)
#else
#include "windows.h"
#endif//Mini CRT 中并不支持特殊的格式操作,仅支持%d和%s两种简单的转换
int vfprintf(FILE* stream, const char* format, va_list arglist )
{int translating = 0;int ret = 0; //记录最终输出的字符个数const char* p = 0;//char temp[10];//strcpy(temp, "evilsama");//fputs(temp, stream);//fputs(*(const char**)arglist, stream);//fputs(itoa(123, temp, 10), stream);//fputs("entry the vfprintf\n",stream);for (p = format; *p != '\0'; ++p){switch (*p){case '%'://fputs("\n we truly enter the %-part \n", stream);if (! translating){translating = 1; //translating置为1,代表后面的字符需要解析char temp[10];//itoa( translating, temp, 10);//fputs("translating = ", stream);//fputs(temp, stream);}else{if (fputc('%', stream) < 0)return EOF;++ret;translating = 0;}break;case 'd':if (translating) //%d{char buf[16];translating = 0;itoa( va_arg(arglist, int), buf, 10);if (fputs(buf, stream) < 0)return EOF;ret += strlen(buf);}else if (fputc('d', stream) < 0)return EOF;else++ret;break;case 's':if (translating) //%s{const char* str = va_arg(arglist, const char*);//fputs("\n we truly enter the s-part \n", stream);translating = 0;if (fputs(str, stream) < 0)return EOF;ret += strlen(str);}else if (fputc ('s' , stream) < 0)return EOF;else ++ret;break;default:if (translating)translating = 0;if ( fputc(*p, stream) < 0 )return EOF;else++ret;break;}}return ret;
}int printf(const char* format, ...)
{va_list(arglist);va_start(arglist, format);return vfprintf(stdout, format, arglist);
}int fprintf(FILE* stream, const char* format, ...)
{va_list(arglist);va_start(arglist, format);return vfprintf(stream, format, arglist);
}
函数调用惯例

通过上述宏定义和宏实现的过程,显示了变长参数“顺藤摸瓜”的遍历过程。而谈到这种变长参数“顺藤摸瓜”的效果,则不得不说函数调用规范。正是调用惯例“cdecl”的存在才使得变长参数这种“调用时方能确定详细使用情况”的机制才能得以存在。

调用惯例清理方参数传递顺序函数编译后修饰规则
cdecl函数调用方从右到左的顺序压栈下划线+函数名
stdcall函数本身即被调用方从右到左的顺序压栈下划线+函数名+@+参数占用字节数
fastcall函数本身函数的头两个 DWORD(4Byte)类型或者更少字节的参数被放入寄存器,其他剩下的参数依旧按照从右到左的顺序压栈@+函数名+@+参数的字节数
pacall函数本身从左到右的顺序压栈较为复杂,可单独了解

在进行函数调用之前需要将本次调用的参数放置在栈中,而后才能正式启动本次调用,子函数使用完成后,本轮调用使用的参数显然是需要被弹出栈的,但本着“谁使用,谁处理”的原则,一般的,参数出栈这种清理工作是需要被调用函数主动清理的。被调用方主动清理参数出栈在大多数情况下是合理的,但是如果面对一些事先无法确认调用情况,如参数个数,显然被调用方是无法事先知道弹栈的范围的,这种情况下便是需要cdecl调用惯例,交由调用者来处理出栈。

可借由使用cdecl和stdcall两修饰符的函数的反汇编代码的末端来查看这两种调用惯例的不同之处。
/1.cdecl调用规范:被调用方不负责弹出参数,由主动调用者负责为后栈中参数的弹出清理

mov esp, ebp //恢复到esp此前的栈顶位置,回到调用方的栈顶
pop ebp  //恢复到ebp此前的栈底位置,回到调用方的栈底
ret //将ebp+4处保留的return address装载近eip寄存器

/2.stdcall调用规范:和cdecl调用惯例最大的不同是末端ret变成了ret X

mov esp, ebp //恢复到esp此前的栈顶位置,回到调用方的栈顶
pop ebp  //恢复到ebp此前的栈底位置,回到调用方的栈底
ret X//将ebp+4处保留的return address装载近eip寄存器,//并指示CPU自动弹出栈中X字节的空间,X等于本轮调用时传递的参数占用字节总量

可以看到X英爱时在调用前就应该固定下来的,否则也不会被汇编进最后的汇编代码中,调用者也要严格按照API声明的参数个数和类型来进行传递,不能多,不能少,顺序不能乱。看起来呆板不够灵活,但是可靠性强,一旦发生调用不规范可及时示警。这也是Windows API都采用stdcall规范(宏WINAPI的定义)的原因,因为不同的编译器产生栈的方式不尽相同,调用者不一定能正常完成清除工作,如果使用stdcall则函数调用者就可以主动解决参数清理工作,所以涉及跨平台API时,如果能确定函数的行参情况,则应该尽量不使用变长行参,函数使用stdcall调用惯例修饰。但如果遇到可变行参的情况,如printf,则只能使用cdecl。

这篇关于运行库:变长(可变)参数原理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/198908

相关文章

Java内存分配与JVM参数详解(推荐)

《Java内存分配与JVM参数详解(推荐)》本文详解JVM内存结构与参数调整,涵盖堆分代、元空间、GC选择及优化策略,帮助开发者提升性能、避免内存泄漏,本文给大家介绍Java内存分配与JVM参数详解,... 目录引言JVM内存结构JVM参数概述堆内存分配年轻代与老年代调整堆内存大小调整年轻代与老年代比例元空

从原理到实战深入理解Java 断言assert

《从原理到实战深入理解Java断言assert》本文深入解析Java断言机制,涵盖语法、工作原理、启用方式及与异常的区别,推荐用于开发阶段的条件检查与状态验证,并强调生产环境应使用参数验证工具类替代... 目录深入理解 Java 断言(assert):从原理到实战引言:为什么需要断言?一、断言基础1.1 语

MySQL中的表连接原理分析

《MySQL中的表连接原理分析》:本文主要介绍MySQL中的表连接原理分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、环境3、表连接原理【1】驱动表和被驱动表【2】内连接【3】外连接【4编程】嵌套循环连接【5】join buffer4、总结1、背景

深度解析Spring AOP @Aspect 原理、实战与最佳实践教程

《深度解析SpringAOP@Aspect原理、实战与最佳实践教程》文章系统讲解了SpringAOP核心概念、实现方式及原理,涵盖横切关注点分离、代理机制(JDK/CGLIB)、切入点类型、性能... 目录1. @ASPect 核心概念1.1 AOP 编程范式1.2 @Aspect 关键特性2. 完整代码实

Java Stream的distinct去重原理分析

《JavaStream的distinct去重原理分析》Javastream中的distinct方法用于去除流中的重复元素,它返回一个包含过滤后唯一元素的新流,该方法会根据元素的hashcode和eq... 目录一、distinct 的基础用法与核心特性二、distinct 的底层实现原理1. 顺序流中的去重

Spring @Scheduled注解及工作原理

《Spring@Scheduled注解及工作原理》Spring的@Scheduled注解用于标记定时任务,无需额外库,需配置@EnableScheduling,设置fixedRate、fixedDe... 目录1.@Scheduled注解定义2.配置 @Scheduled2.1 开启定时任务支持2.2 创建

Spring Boot 实现 IP 限流的原理、实践与利弊解析

《SpringBoot实现IP限流的原理、实践与利弊解析》在SpringBoot中实现IP限流是一种简单而有效的方式来保障系统的稳定性和可用性,本文给大家介绍SpringBoot实现IP限... 目录一、引言二、IP 限流原理2.1 令牌桶算法2.2 漏桶算法三、使用场景3.1 防止恶意攻击3.2 控制资源

Python中使用uv创建环境及原理举例详解

《Python中使用uv创建环境及原理举例详解》uv是Astral团队开发的高性能Python工具,整合包管理、虚拟环境、Python版本控制等功能,:本文主要介绍Python中使用uv创建环境及... 目录一、uv工具简介核心特点:二、安装uv1. 通过pip安装2. 通过脚本安装验证安装:配置镜像源(可

Mysql的主从同步/复制的原理分析

《Mysql的主从同步/复制的原理分析》:本文主要介绍Mysql的主从同步/复制的原理分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录为什么要主从同步?mysql主从同步架构有哪些?Mysql主从复制的原理/整体流程级联复制架构为什么好?Mysql主从复制注意

Nacos注册中心和配置中心的底层原理全面解读

《Nacos注册中心和配置中心的底层原理全面解读》:本文主要介绍Nacos注册中心和配置中心的底层原理的全面解读,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录临时实例和永久实例为什么 Nacos 要将服务实例分为临时实例和永久实例?1.x 版本和2.x版本的区别