遗传算法(Genetic Algorithm)之deap学习笔记(五):Santa Fe Ant Trail问题

本文主要是介绍遗传算法(Genetic Algorithm)之deap学习笔记(五):Santa Fe Ant Trail问题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Santa Fe Ant Trail问题是一个经典的人工生命(Artificial Life)问题,用来探索生物群体行为和分布式智能的原理。这个问题是基于蚂蚁在寻找食物时的行为而建立的。问题中,蚂蚁在一个网格世界中寻找食物,并在回家时留下一条路径素,用于引导其他蚂蚁找到食物。蚂蚁在寻找食物和回家时,根据自身和周围信息做出决策,例如嗅觉、视觉等。

Santa Fe Ant Trail问题中,蚂蚁的行动是基于一组简单的规则,如蚂蚁在感知到食物的存在时朝食物方向移动,并在回家时遵循已有的路径素。通过这些规则,蚂蚁群体能够在整个网格世界中有效地搜索到食物,并且留下的路径素也能引导其他蚂蚁更快地找到食物。这个问题被广泛用于探索分布式智能和自组织行为的原理,也被用于设计优化算法、模拟群体行为等应用领域。

这篇博客具体讲述的问题是设计一个agent,它可以成功地引导一只人造蚂蚁沿着方形网格上的一条小径收集尽可能最多的食物,最大移动次数为600。

以下为此问题用到的蚂蚁移动的地图的.txt文件

S###............................
...#............................
...#.....................###....
...#....................#....#..
...#....................#....#..
...####.#####........##.........
............#................#..
............#.......#...........
............#.......#........#..
............#.......#...........
....................#...........
............#................#..
............#...................
............#.......#.....###...
............#.......#..#........
.................#..............
................................
............#...........#.......
............#...#..........#....
............#...#...............
............#...#...............
............#...#.........#.....
............#..........#........
............#...................
...##..#####....#...............
.#..............#...............
.#..............#...............
.#......#######.................
.#.....#........................
.......#........................
..####..........................
................................

以下为构建蚂蚁移动的函数

import copy
import random
import numpy
import pygraphviz as pgv
from functools import partialfrom deap import base
from deap import creator
from deap import tools
from deap import gpclass AntSimulator(object):direction = ["north","east","south","west"]dir_row = [1, 0, -1, 0]dir_col = [0, 1, 0, -1]def __init__(self, max_moves):self.max_moves = max_movesself.moves = 0self.eaten = 0self.routine = Nonedef _reset(self):self.row = self.row_start self.col = self.col_start self.dir = 1self.moves = 0  self.eaten = 0self.matrix_exc = copy.deepcopy(self.matrix)@propertydef position(self):return (self.row, self.col, self.direction[self.dir])# 将蚂蚁向左转 90 度def turn_left(self): if self.moves < self.max_moves:self.moves += 1self.dir = (self.dir - 1) % 4# 将蚂蚁向右转 90 度def turn_right(self):if self.moves < self.max_moves:self.moves += 1    self.dir = (self.dir + 1) % 4# 将蚂蚁向前移动一格 def move_forward(self):if self.moves < self.max_moves:self.moves += 1self.row = (self.row + self.dir_row[self.dir]) % self.matrix_rowself.col = (self.col + self.dir_col[self.dir]) % self.matrix_colif self.matrix_exc[self.row][self.col] == "food":self.eaten += 1self.matrix_exc[self.row][self.col] = "passed"def sense_food(self):ahead_row = (self.row + self.dir_row[self.dir]) % self.matrix_rowahead_col = (self.col + self.dir_col[self.dir]) % self.matrix_col        return self.matrix_exc[ahead_row][ahead_col] == "food"# 查看蚂蚁当前面对的方块,然后根据该方块是包含食物还是空的来执行其两个参数之一def if_food_ahead(self, out1, out2):return partial(if_then_else, self.sense_food, out1, out2)def run(self,routine):self._reset()while self.moves < self.max_moves:routine()def parse_matrix(self, matrix):self.matrix = list()for i, line in enumerate(matrix):self.matrix.append(list())for j, col in enumerate(line):if col == "#":self.matrix[-1].append("food")elif col == ".":self.matrix[-1].append("empty")elif col == "S":self.matrix[-1].append("empty")self.row_start = self.row = iself.col_start = self.col = jself.dir = 1self.matrix_row = len(self.matrix)self.matrix_col = len(self.matrix[0])self.matrix_exc = copy.deepcopy(self.matrix)

最多移动600次

ant = AntSimulator(600)# 打开地图
with  open("santafe_trail.txt") as trail_file:ant.parse_matrix(trail_file)

添加终端以及注册进之前的蚂蚁函数

pset = gp.PrimitiveSet("MAIN", 0)def progn(*args):for arg in args:arg()def prog2(out1, out2): return partial(progn,out1,out2)def prog3(out1, out2, out3):     return partial(progn,out1,out2,out3)def if_then_else(condition, out1, out2):out1() if condition() else out2()pset.addPrimitive(ant.if_food_ahead, 2)
pset.addPrimitive(prog2, 2)
pset.addPrimitive(prog3, 3)
pset.addTerminal(ant.move_forward)
pset.addTerminal(ant.turn_left)
pset.addTerminal(ant.turn_right)

注册个体,适应度,详情解释可以看第一篇博客

creator.create("FitnessMax", base.Fitness, weights=(1.0,))
creator.create("Individual", gp.PrimitiveTree, fitness=creator.FitnessMax)toolbox = base.Toolbox()
toolbox.register("expr_init", gp.genFull, pset=pset, min_=1, max_=2)
toolbox.register("individual", tools.initIterate, creator.Individual, toolbox.expr_init)
toolbox.register("population", tools.initRepeat, list, toolbox.individual)#toolbox.register("select", tools.selTournament, tournsize=7)
toolbox.register("select", tools.selDoubleTournament, fitness_size = 7, parsimony_size = 1.4, fitness_first = True, fit_attr='fitness' )
toolbox.register("mate", gp.cxOnePoint)
toolbox.register("expr_mut", gp.genFull, min_=0, max_=3)
toolbox.register("mutate", gp.mutUniform, expr=toolbox.expr_mut, pset=pset)

evaluation函数

def evalArtificialAnt(individual):routine = gp.compile(individual, pset)ant.run(routine)return ant.eaten,toolbox.register("evaluate", evalArtificialAnt)# 把min,max等也注册
stats_fit = tools.Statistics(lambda ind: ind.fitness.values)
stats_size = tools.Statistics(len)
stats = tools.MultiStatistics(fitness=stats_fit, size=stats_size)
stats.register("avg", numpy.mean)
stats.register("std", numpy.std)
stats.register("min", numpy.min)
stats.register("max", numpy.max)

主题程序

logbook = tools.Logbook()
pop = toolbox.population(n=500) ## 迭代200次
NGEN, CXPB, MUTPB = 200, 0.2, 0.2fitnesses = list(map(toolbox.evaluate, pop))
for ind, fit in zip(pop, fitnesses):ind.fitness.values = fitfor g in range(NGEN):print("-- Generation %i --" % g)offspring = toolbox.select(pop, len(pop))offspring = list(map(toolbox.clone, offspring))for child1, child2 in zip(offspring[::2], offspring[1::2]):if random.random() < CXPB:toolbox.mate(child1, child2)del child1.fitness.valuesdel child2.fitness.valuesfor mutant in offspring:if random.random() < MUTPB:toolbox.mutate(mutant)del mutant.fitness.valuesinvalid_ind = [ind for ind in offspring if not ind.fitness.valid]fitnesses = map(toolbox.evaluate, invalid_ind)for ind, fit in zip(invalid_ind, fitnesses):ind.fitness.values = fitNeval = len(invalid_ind)pop[:] = offspringrecord = stats.compile(pop)logbook.record(gen=g, evals=Neval, **record)print("-- End of evolution --")

把图画出来

import matplotlib.pyplot as plt
%matplotlib inlinegen = logbook.chapters['fitness'].select("gen")
_min = logbook.chapters['fitness'].select("min")
_max = logbook.chapters['fitness'].select("max")
avgs = logbook.chapters['fitness'].select("avg")
stds = logbook.chapters['fitness'].select("std")plt.rc('axes', labelsize=14)
plt.rc('xtick', labelsize=14)
plt.rc('ytick', labelsize=14) 
plt.rc('legend', fontsize=14)fig, ax1 = plt.subplots()
line1 = ax1.plot(gen, avgs)
ax1.set_xlabel("Generation")
ax1.set_ylabel("Fitness")#line2 = ax1.plot(gen, _min)
#line3 = ax1.plot(gen, _max)

找到最佳个体

indv = tools.selBest(pop, 1)[0]
print(indv)toolbox.evaluate(indv)

以下为用树画出来的这个问题的整个流程

nodes, edges, labels = gp.graph(indv)tree = pgv.AGraph()
tree.add_nodes_from(nodes)
tree.add_edges_from(edges)
tree.layout(prog="dot")for i in nodes:n = tree.get_node(i)n.attr["label"] = labels[i]from IPython.display import ImagetreePlot = tree.draw(format='png', prog='dot')
Image(treePlot)

以上就是人工蚂蚁问题的完整代码了,如果有问题可以随时问我,谢谢。

这篇关于遗传算法(Genetic Algorithm)之deap学习笔记(五):Santa Fe Ant Trail问题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/192763

相关文章

关于@MapperScan和@ComponentScan的使用问题

《关于@MapperScan和@ComponentScan的使用问题》文章介绍了在使用`@MapperScan`和`@ComponentScan`时可能会遇到的包扫描冲突问题,并提供了解决方法,同时,... 目录@MapperScan和@ComponentScan的使用问题报错如下原因解决办法课外拓展总结@

MybatisGenerator文件生成不出对应文件的问题

《MybatisGenerator文件生成不出对应文件的问题》本文介绍了使用MybatisGenerator生成文件时遇到的问题及解决方法,主要步骤包括检查目标表是否存在、是否能连接到数据库、配置生成... 目录MyBATisGenerator 文件生成不出对应文件先在项目结构里引入“targetProje

C#使用HttpClient进行Post请求出现超时问题的解决及优化

《C#使用HttpClient进行Post请求出现超时问题的解决及优化》最近我的控制台程序发现有时候总是出现请求超时等问题,通常好几分钟最多只有3-4个请求,在使用apipost发现并发10个5分钟也... 目录优化结论单例HttpClient连接池耗尽和并发并发异步最终优化后优化结论我直接上优化结论吧,

Java内存泄漏问题的排查、优化与最佳实践

《Java内存泄漏问题的排查、优化与最佳实践》在Java开发中,内存泄漏是一个常见且令人头疼的问题,内存泄漏指的是程序在运行过程中,已经不再使用的对象没有被及时释放,从而导致内存占用不断增加,最终... 目录引言1. 什么是内存泄漏?常见的内存泄漏情况2. 如何排查 Java 中的内存泄漏?2.1 使用 J

numpy求解线性代数相关问题

《numpy求解线性代数相关问题》本文主要介绍了numpy求解线性代数相关问题,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 在numpy中有numpy.array类型和numpy.mat类型,前者是数组类型,后者是矩阵类型。数组

解决systemctl reload nginx重启Nginx服务报错:Job for nginx.service invalid问题

《解决systemctlreloadnginx重启Nginx服务报错:Jobfornginx.serviceinvalid问题》文章描述了通过`systemctlstatusnginx.se... 目录systemctl reload nginx重启Nginx服务报错:Job for nginx.javas

Redis缓存问题与缓存更新机制详解

《Redis缓存问题与缓存更新机制详解》本文主要介绍了缓存问题及其解决方案,包括缓存穿透、缓存击穿、缓存雪崩等问题的成因以及相应的预防和解决方法,同时,还详细探讨了缓存更新机制,包括不同情况下的缓存更... 目录一、缓存问题1.1 缓存穿透1.1.1 问题来源1.1.2 解决方案1.2 缓存击穿1.2.1

vue解决子组件样式覆盖问题scoped deep

《vue解决子组件样式覆盖问题scopeddeep》文章主要介绍了在Vue项目中处理全局样式和局部样式的方法,包括使用scoped属性和深度选择器(/deep/)来覆盖子组件的样式,作者建议所有组件... 目录前言scoped分析deep分析使用总结所有组件必须加scoped父组件覆盖子组件使用deep前言

解决Cron定时任务中Pytest脚本无法发送邮件的问题

《解决Cron定时任务中Pytest脚本无法发送邮件的问题》文章探讨解决在Cron定时任务中运行Pytest脚本时邮件发送失败的问题,先优化环境变量,再检查Pytest邮件配置,接着配置文件确保SMT... 目录引言1. 环境变量优化:确保Cron任务可以正确执行解决方案:1.1. 创建一个脚本1.2. 修

Python 标准库time时间的访问和转换问题小结

《Python标准库time时间的访问和转换问题小结》time模块为Python提供了处理时间和日期的多种功能,适用于多种与时间相关的场景,包括获取当前时间、格式化时间、暂停程序执行、计算程序运行时... 目录模块介绍使用场景主要类主要函数 - time()- sleep()- localtime()- g