遗传算法(Genetic Algorithm)之deap学习笔记(五):Santa Fe Ant Trail问题

本文主要是介绍遗传算法(Genetic Algorithm)之deap学习笔记(五):Santa Fe Ant Trail问题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Santa Fe Ant Trail问题是一个经典的人工生命(Artificial Life)问题,用来探索生物群体行为和分布式智能的原理。这个问题是基于蚂蚁在寻找食物时的行为而建立的。问题中,蚂蚁在一个网格世界中寻找食物,并在回家时留下一条路径素,用于引导其他蚂蚁找到食物。蚂蚁在寻找食物和回家时,根据自身和周围信息做出决策,例如嗅觉、视觉等。

Santa Fe Ant Trail问题中,蚂蚁的行动是基于一组简单的规则,如蚂蚁在感知到食物的存在时朝食物方向移动,并在回家时遵循已有的路径素。通过这些规则,蚂蚁群体能够在整个网格世界中有效地搜索到食物,并且留下的路径素也能引导其他蚂蚁更快地找到食物。这个问题被广泛用于探索分布式智能和自组织行为的原理,也被用于设计优化算法、模拟群体行为等应用领域。

这篇博客具体讲述的问题是设计一个agent,它可以成功地引导一只人造蚂蚁沿着方形网格上的一条小径收集尽可能最多的食物,最大移动次数为600。

以下为此问题用到的蚂蚁移动的地图的.txt文件

S###............................
...#............................
...#.....................###....
...#....................#....#..
...#....................#....#..
...####.#####........##.........
............#................#..
............#.......#...........
............#.......#........#..
............#.......#...........
....................#...........
............#................#..
............#...................
............#.......#.....###...
............#.......#..#........
.................#..............
................................
............#...........#.......
............#...#..........#....
............#...#...............
............#...#...............
............#...#.........#.....
............#..........#........
............#...................
...##..#####....#...............
.#..............#...............
.#..............#...............
.#......#######.................
.#.....#........................
.......#........................
..####..........................
................................

以下为构建蚂蚁移动的函数

import copy
import random
import numpy
import pygraphviz as pgv
from functools import partialfrom deap import base
from deap import creator
from deap import tools
from deap import gpclass AntSimulator(object):direction = ["north","east","south","west"]dir_row = [1, 0, -1, 0]dir_col = [0, 1, 0, -1]def __init__(self, max_moves):self.max_moves = max_movesself.moves = 0self.eaten = 0self.routine = Nonedef _reset(self):self.row = self.row_start self.col = self.col_start self.dir = 1self.moves = 0  self.eaten = 0self.matrix_exc = copy.deepcopy(self.matrix)@propertydef position(self):return (self.row, self.col, self.direction[self.dir])# 将蚂蚁向左转 90 度def turn_left(self): if self.moves < self.max_moves:self.moves += 1self.dir = (self.dir - 1) % 4# 将蚂蚁向右转 90 度def turn_right(self):if self.moves < self.max_moves:self.moves += 1    self.dir = (self.dir + 1) % 4# 将蚂蚁向前移动一格 def move_forward(self):if self.moves < self.max_moves:self.moves += 1self.row = (self.row + self.dir_row[self.dir]) % self.matrix_rowself.col = (self.col + self.dir_col[self.dir]) % self.matrix_colif self.matrix_exc[self.row][self.col] == "food":self.eaten += 1self.matrix_exc[self.row][self.col] = "passed"def sense_food(self):ahead_row = (self.row + self.dir_row[self.dir]) % self.matrix_rowahead_col = (self.col + self.dir_col[self.dir]) % self.matrix_col        return self.matrix_exc[ahead_row][ahead_col] == "food"# 查看蚂蚁当前面对的方块,然后根据该方块是包含食物还是空的来执行其两个参数之一def if_food_ahead(self, out1, out2):return partial(if_then_else, self.sense_food, out1, out2)def run(self,routine):self._reset()while self.moves < self.max_moves:routine()def parse_matrix(self, matrix):self.matrix = list()for i, line in enumerate(matrix):self.matrix.append(list())for j, col in enumerate(line):if col == "#":self.matrix[-1].append("food")elif col == ".":self.matrix[-1].append("empty")elif col == "S":self.matrix[-1].append("empty")self.row_start = self.row = iself.col_start = self.col = jself.dir = 1self.matrix_row = len(self.matrix)self.matrix_col = len(self.matrix[0])self.matrix_exc = copy.deepcopy(self.matrix)

最多移动600次

ant = AntSimulator(600)# 打开地图
with  open("santafe_trail.txt") as trail_file:ant.parse_matrix(trail_file)

添加终端以及注册进之前的蚂蚁函数

pset = gp.PrimitiveSet("MAIN", 0)def progn(*args):for arg in args:arg()def prog2(out1, out2): return partial(progn,out1,out2)def prog3(out1, out2, out3):     return partial(progn,out1,out2,out3)def if_then_else(condition, out1, out2):out1() if condition() else out2()pset.addPrimitive(ant.if_food_ahead, 2)
pset.addPrimitive(prog2, 2)
pset.addPrimitive(prog3, 3)
pset.addTerminal(ant.move_forward)
pset.addTerminal(ant.turn_left)
pset.addTerminal(ant.turn_right)

注册个体,适应度,详情解释可以看第一篇博客

creator.create("FitnessMax", base.Fitness, weights=(1.0,))
creator.create("Individual", gp.PrimitiveTree, fitness=creator.FitnessMax)toolbox = base.Toolbox()
toolbox.register("expr_init", gp.genFull, pset=pset, min_=1, max_=2)
toolbox.register("individual", tools.initIterate, creator.Individual, toolbox.expr_init)
toolbox.register("population", tools.initRepeat, list, toolbox.individual)#toolbox.register("select", tools.selTournament, tournsize=7)
toolbox.register("select", tools.selDoubleTournament, fitness_size = 7, parsimony_size = 1.4, fitness_first = True, fit_attr='fitness' )
toolbox.register("mate", gp.cxOnePoint)
toolbox.register("expr_mut", gp.genFull, min_=0, max_=3)
toolbox.register("mutate", gp.mutUniform, expr=toolbox.expr_mut, pset=pset)

evaluation函数

def evalArtificialAnt(individual):routine = gp.compile(individual, pset)ant.run(routine)return ant.eaten,toolbox.register("evaluate", evalArtificialAnt)# 把min,max等也注册
stats_fit = tools.Statistics(lambda ind: ind.fitness.values)
stats_size = tools.Statistics(len)
stats = tools.MultiStatistics(fitness=stats_fit, size=stats_size)
stats.register("avg", numpy.mean)
stats.register("std", numpy.std)
stats.register("min", numpy.min)
stats.register("max", numpy.max)

主题程序

logbook = tools.Logbook()
pop = toolbox.population(n=500) ## 迭代200次
NGEN, CXPB, MUTPB = 200, 0.2, 0.2fitnesses = list(map(toolbox.evaluate, pop))
for ind, fit in zip(pop, fitnesses):ind.fitness.values = fitfor g in range(NGEN):print("-- Generation %i --" % g)offspring = toolbox.select(pop, len(pop))offspring = list(map(toolbox.clone, offspring))for child1, child2 in zip(offspring[::2], offspring[1::2]):if random.random() < CXPB:toolbox.mate(child1, child2)del child1.fitness.valuesdel child2.fitness.valuesfor mutant in offspring:if random.random() < MUTPB:toolbox.mutate(mutant)del mutant.fitness.valuesinvalid_ind = [ind for ind in offspring if not ind.fitness.valid]fitnesses = map(toolbox.evaluate, invalid_ind)for ind, fit in zip(invalid_ind, fitnesses):ind.fitness.values = fitNeval = len(invalid_ind)pop[:] = offspringrecord = stats.compile(pop)logbook.record(gen=g, evals=Neval, **record)print("-- End of evolution --")

把图画出来

import matplotlib.pyplot as plt
%matplotlib inlinegen = logbook.chapters['fitness'].select("gen")
_min = logbook.chapters['fitness'].select("min")
_max = logbook.chapters['fitness'].select("max")
avgs = logbook.chapters['fitness'].select("avg")
stds = logbook.chapters['fitness'].select("std")plt.rc('axes', labelsize=14)
plt.rc('xtick', labelsize=14)
plt.rc('ytick', labelsize=14) 
plt.rc('legend', fontsize=14)fig, ax1 = plt.subplots()
line1 = ax1.plot(gen, avgs)
ax1.set_xlabel("Generation")
ax1.set_ylabel("Fitness")#line2 = ax1.plot(gen, _min)
#line3 = ax1.plot(gen, _max)

找到最佳个体

indv = tools.selBest(pop, 1)[0]
print(indv)toolbox.evaluate(indv)

以下为用树画出来的这个问题的整个流程

nodes, edges, labels = gp.graph(indv)tree = pgv.AGraph()
tree.add_nodes_from(nodes)
tree.add_edges_from(edges)
tree.layout(prog="dot")for i in nodes:n = tree.get_node(i)n.attr["label"] = labels[i]from IPython.display import ImagetreePlot = tree.draw(format='png', prog='dot')
Image(treePlot)

以上就是人工蚂蚁问题的完整代码了,如果有问题可以随时问我,谢谢。

这篇关于遗传算法(Genetic Algorithm)之deap学习笔记(五):Santa Fe Ant Trail问题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/192763

相关文章

线上Java OOM问题定位与解决方案超详细解析

《线上JavaOOM问题定位与解决方案超详细解析》OOM是JVM抛出的错误,表示内存分配失败,:本文主要介绍线上JavaOOM问题定位与解决方案的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录一、OOM问题核心认知1.1 OOM定义与技术定位1.2 OOM常见类型及技术特征二、OOM问题定位工具

Vue3绑定props默认值问题

《Vue3绑定props默认值问题》使用Vue3的defineProps配合TypeScript的interface定义props类型,并通过withDefaults设置默认值,使组件能安全访问传入的... 目录前言步骤步骤1:使用 defineProps 定义 Props步骤2:设置默认值总结前言使用T

Web服务器-Nginx-高并发问题

《Web服务器-Nginx-高并发问题》Nginx通过事件驱动、I/O多路复用和异步非阻塞技术高效处理高并发,结合动静分离和限流策略,提升性能与稳定性... 目录前言一、架构1. 原生多进程架构2. 事件驱动模型3. IO多路复用4. 异步非阻塞 I/O5. Nginx高并发配置实战二、动静分离1. 职责2

解决升级JDK报错:module java.base does not“opens java.lang.reflect“to unnamed module问题

《解决升级JDK报错:modulejava.basedoesnot“opensjava.lang.reflect“tounnamedmodule问题》SpringBoot启动错误源于Jav... 目录问题描述原因分析解决方案总结问题描述启动sprintboot时报以下错误原因分析编程异js常是由Ja

MySQL 表空却 ibd 文件过大的问题及解决方法

《MySQL表空却ibd文件过大的问题及解决方法》本文给大家介绍MySQL表空却ibd文件过大的问题及解决方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考... 目录一、问题背景:表空却 “吃满” 磁盘的怪事二、问题复现:一步步编程还原异常场景1. 准备测试源表与数据

解决Nginx启动报错Job for nginx.service failed because the control process exited with error code问题

《解决Nginx启动报错Jobfornginx.servicefailedbecausethecontrolprocessexitedwitherrorcode问题》Nginx启... 目录一、报错如下二、解决原因三、解决方式总结一、报错如下Job for nginx.service failed bec

SysMain服务可以关吗? 解决SysMain服务导致的高CPU使用率问题

《SysMain服务可以关吗?解决SysMain服务导致的高CPU使用率问题》SysMain服务是超级预读取,该服务会记录您打开应用程序的模式,并预先将它们加载到内存中以节省时间,但它可能占用大量... 在使用电脑的过程中,CPU使用率居高不下是许多用户都遇到过的问题,其中名为SysMain的服务往往是罪魁

Unity新手入门学习殿堂级知识详细讲解(图文)

《Unity新手入门学习殿堂级知识详细讲解(图文)》Unity是一款跨平台游戏引擎,支持2D/3D及VR/AR开发,核心功能模块包括图形、音频、物理等,通过可视化编辑器与脚本扩展实现开发,项目结构含A... 目录入门概述什么是 UnityUnity引擎基础认知编辑器核心操作Unity 编辑器项目模式分类工程

MySQ中出现幻读问题的解决过程

《MySQ中出现幻读问题的解决过程》文章解析MySQLInnoDB通过MVCC与间隙锁机制在可重复读隔离级别下解决幻读,确保事务一致性,同时指出性能影响及乐观锁等替代方案,帮助开发者优化数据库应用... 目录一、幻读的准确定义与核心特征幻读 vs 不可重复读二、mysql隔离级别深度解析各隔离级别的实现差异

C++ vector越界问题的完整解决方案

《C++vector越界问题的完整解决方案》在C++开发中,std::vector作为最常用的动态数组容器,其便捷性与性能优势使其成为处理可变长度数据的首选,然而,数组越界访问始终是威胁程序稳定性的... 目录引言一、vector越界的底层原理与危害1.1 越界访问的本质原因1.2 越界访问的实际危害二、基