DreamBooth论文解读

2023-10-11 10:59
文章标签 解读 论文 dreambooth

本文主要是介绍DreamBooth论文解读,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 摘要
  • 问题
  • 算法
    • 3.1 文生图扩散模型
    • 3.2 个性化文生图模型
    • 3.3 特定类别先验保留损失
  • 实验
    • 评估方式
    • 比较
    • 消融实验
      • PPL
      • 类别先验
    • 应用
    • 限制
  • 结论

论文: 《DreamBooth: Fine Tuning Text-to-Image Diffusion Models for Subject-Driven Generation》
project: https://dreambooth.github.io/
第三方代码: https://github.com/XavierXiao/Dreambooth-Stable-Diffusion

摘要

文本生成图像模型取得不错进展,但是无法根据提供的参考集生成新模态。DreamBooth利用预训练模型语义先验及新的特定目标先验保留损失合成未出现在参考图中的各种场景、姿势、视角、光照下目标。

问题

现有文本生成图片模型无法依据参考图生成该目标。

算法

仅需3-5张图像不需要任何文本描述,即可通过各种prompt引导生成目标变体。

3.1 文生图扩散模型

损失函数如式1,对于初始噪声 ϵ ∈ N ( 0 , I ) \epsilon \in N(0, I) ϵN(0,I),x为真值。
在这里插入图片描述

3.2 个性化文生图模型

常规思路是通过少量数据集进行finetune,但是容易出现过拟合及模式坍塌。但是作者发现大规模文生图扩散模型擅长整合新信息且不会遗忘先验知识,也不会过拟合到小规模训练集。
作者设计prompt为“a [identifier] [class noun]”,[identifier]为目标相关固定标识符,[class noun]为目标类别描述,比如猫、狗。如果不使用类别描述或使用错误类别描述将导致增加训练时间或者发生语言偏移,进而降低表现。
标识符使用常见单词或随机字母,效果相似,因为每个字母分别进行tokenize,因此作者使用词汇中不常见token f ( V ^ ) f( \hat V) f(V^)转换进文本空间 V ^ \hat V V^

3.3 特定类别先验保留损失

直接finetune所有模型所有层将导致语言偏移;同时可能导致输出多样性降低。
针对上述问题作者提出一种自生特定类别先验损失用于保证多样性同时抑制语言偏移。该方法本质上使用生成样本监督模型。损失函数如式2,其中 C p r C_{pr} Cpr仅包含类别信息,图3展示该过程。
在这里插入图片描述
在这里插入图片描述

实验

评估方式

  1. CLIP-I:CLIP的提取生成图与真图的embedding,计算两者之间的余弦相似度;
  2. DINO:ViT- S/16 DINO提取生成图与真图的embedding,计算两者之间的余弦相似度;
  3. CLIP-T:计算prompt机图像的CLIP embedding之间余弦相似度

比较

在这里插入图片描述
表1作者比较DreamBooth超越Textual Inversion,同时使用Imagen优于使用Stable Diffusion,
表2展示人工评测结果,在目标精确度以及prompt一致性上DreamBooth优于Textual Inversion;结合表1,量化指标微小差异,对用户直观感受差异巨大。可视化结果如图4.
在这里插入图片描述
在这里插入图片描述

消融实验

PPL

在这里插入图片描述
作者比较prior preservation loss (PPL)影响,结果如表3,评估方式为PRES,计算先验类别随机生成目标与真实图指定目标之间DINO embedding距离,该指标越高表明目标多样性不足,发生模式坍塌。同时作者使用平均LPIPS进行多样性评估(DIV)。作者发现使用PPL具有更高多样性,可视化结果如图6。
在这里插入图片描述

类别先验

使用类别先验,可生成各种纹理目标;使用错误类别,将导致生成奇怪物体;不使用类别先验,导致模型难以拟合,进而生成错误目标。实验结果如表4。
在这里插入图片描述

应用

重构。可生成在不同环境中目标,如图7。
在这里插入图片描述

艺术再现。如图8
新颖视角生成。如图8,仅使用4张正面图可生成未见过视角:侧面、上面、下面。
属性修改。如图8,输入prompt为:“a cross of a [V] dog and a [target species]”
在这里插入图片描述

限制

在这里插入图片描述
图9为一些失败案例。
作者归因于:
a.较弱先验,或者目标与特定概念很少出现在训练集;
b.环境与目标外观耦合;
c.过拟合到真实图片,当prompt与真实图相似时易出现。
同时对于一些比较少见目标,模型难以生成该目标多个变体。

结论

作者提出的DreamBooth,仅需要3-5张目标图片,通过prompt引导就可生成该目标变体。该方法核心为将该目标与特定标识符绑定。

这篇关于DreamBooth论文解读的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/187577

相关文章

MySQL中时区参数time_zone解读

《MySQL中时区参数time_zone解读》MySQL时区参数time_zone用于控制系统函数和字段的DEFAULTCURRENT_TIMESTAMP属性,修改时区可能会影响timestamp类型... 目录前言1.时区参数影响2.如何设置3.字段类型选择总结前言mysql 时区参数 time_zon

MySQL中的锁和MVCC机制解读

《MySQL中的锁和MVCC机制解读》MySQL事务、锁和MVCC机制是确保数据库操作原子性、一致性和隔离性的关键,事务必须遵循ACID原则,锁的类型包括表级锁、行级锁和意向锁,MVCC通过非锁定读和... 目录mysql的锁和MVCC机制事务的概念与ACID特性锁的类型及其工作机制锁的粒度与性能影响多版本

Redis过期键删除策略解读

《Redis过期键删除策略解读》Redis通过惰性删除策略和定期删除策略来管理过期键,惰性删除策略在键被访问时检查是否过期并删除,节省CPU开销但可能导致过期键滞留,定期删除策略定期扫描并删除过期键,... 目录1.Redis使用两种不同的策略来删除过期键,分别是惰性删除策略和定期删除策略1.1惰性删除策略

Redis与缓存解读

《Redis与缓存解读》文章介绍了Redis作为缓存层的优势和缺点,并分析了六种缓存更新策略,包括超时剔除、先删缓存再更新数据库、旁路缓存、先更新数据库再删缓存、先更新数据库再更新缓存、读写穿透和异步... 目录缓存缓存优缺点缓存更新策略超时剔除先删缓存再更新数据库旁路缓存(先更新数据库,再删缓存)先更新数

C#反射编程之GetConstructor()方法解读

《C#反射编程之GetConstructor()方法解读》C#中Type类的GetConstructor()方法用于获取指定类型的构造函数,该方法有多个重载版本,可以根据不同的参数获取不同特性的构造函... 目录C# GetConstructor()方法有4个重载以GetConstructor(Type[]

AI hospital 论文Idea

一、Benchmarking Large Language Models on Communicative Medical Coaching: A Dataset and a Novel System论文地址含代码 大多数现有模型和工具主要迎合以患者为中心的服务。这项工作深入探讨了LLMs在提高医疗专业人员的沟通能力。目标是构建一个模拟实践环境,人类医生(即医学学习者)可以在其中与患者代理进行医学

MCU7.keil中build产生的hex文件解读

1.hex文件大致解读 闲来无事,查看了MCU6.用keil新建项目的hex文件 用FlexHex打开 给我的第一印象是:经过软件的解释之后,发现这些数据排列地十分整齐 :02000F0080FE71:03000000020003F8:0C000300787FE4F6D8FD75810702000F3D:00000001FF 把解释后的数据当作十六进制来观察 1.每一行数据

Java ArrayList扩容机制 (源码解读)

结论:初始长度为10,若所需长度小于1.5倍原长度,则按照1.5倍扩容。若不够用则按照所需长度扩容。 一. 明确类内部重要变量含义         1:数组默认长度         2:这是一个共享的空数组实例,用于明确创建长度为0时的ArrayList ,比如通过 new ArrayList<>(0),ArrayList 内部的数组 elementData 会指向这个 EMPTY_EL

论文翻译:arxiv-2024 Benchmark Data Contamination of Large Language Models: A Survey

Benchmark Data Contamination of Large Language Models: A Survey https://arxiv.org/abs/2406.04244 大规模语言模型的基准数据污染:一项综述 文章目录 大规模语言模型的基准数据污染:一项综述摘要1 引言 摘要 大规模语言模型(LLMs),如GPT-4、Claude-3和Gemini的快

论文阅读笔记: Segment Anything

文章目录 Segment Anything摘要引言任务模型数据引擎数据集负责任的人工智能 Segment Anything Model图像编码器提示编码器mask解码器解决歧义损失和训练 Segment Anything 论文地址: https://arxiv.org/abs/2304.02643 代码地址:https://github.com/facebookresear