「 LaTeX 」写论文,图片名字错误 caption error:Undefined control sequence

本文主要是介绍「 LaTeX 」写论文,图片名字错误 caption error:Undefined control sequence,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一.前言

小白,在新LaTex模版中,遇到Undefined control sequence问题,位置在caption,解决方法如下。

二.原因

根据提示知道,是因为缺少库。

三.技术实现

添加库   \usepackage{caption}

即可。

这篇关于「 LaTeX 」写论文,图片名字错误 caption error:Undefined control sequence的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/186746

相关文章

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

AI hospital 论文Idea

一、Benchmarking Large Language Models on Communicative Medical Coaching: A Dataset and a Novel System论文地址含代码 大多数现有模型和工具主要迎合以患者为中心的服务。这项工作深入探讨了LLMs在提高医疗专业人员的沟通能力。目标是构建一个模拟实践环境,人类医生(即医学学习者)可以在其中与患者代理进行医学

论文翻译:arxiv-2024 Benchmark Data Contamination of Large Language Models: A Survey

Benchmark Data Contamination of Large Language Models: A Survey https://arxiv.org/abs/2406.04244 大规模语言模型的基准数据污染:一项综述 文章目录 大规模语言模型的基准数据污染:一项综述摘要1 引言 摘要 大规模语言模型(LLMs),如GPT-4、Claude-3和Gemini的快

论文阅读笔记: Segment Anything

文章目录 Segment Anything摘要引言任务模型数据引擎数据集负责任的人工智能 Segment Anything Model图像编码器提示编码器mask解码器解决歧义损失和训练 Segment Anything 论文地址: https://arxiv.org/abs/2304.02643 代码地址:https://github.com/facebookresear

Android 10.0 mtk平板camera2横屏预览旋转90度横屏拍照图片旋转90度功能实现

1.前言 在10.0的系统rom定制化开发中,在进行一些平板等默认横屏的设备开发的过程中,需要在进入camera2的 时候,默认预览图像也是需要横屏显示的,在上一篇已经实现了横屏预览功能,然后发现横屏预览后,拍照保存的图片 依然是竖屏的,所以说同样需要将图片也保存为横屏图标了,所以就需要看下mtk的camera2的相关横屏保存图片功能, 如何实现实现横屏保存图片功能 如图所示: 2.mtk

Spring MVC 图片上传

引入需要的包 <dependency><groupId>commons-logging</groupId><artifactId>commons-logging</artifactId><version>1.1</version></dependency><dependency><groupId>commons-io</groupId><artifactId>commons-

Prompt - 将图片的表格转换成Markdown

Prompt - 将图片的表格转换成Markdown 0. 引言1. 提示词2. 原始版本 0. 引言 最近尝试将图片中的表格转换成Markdown格式,需要不断条件和优化提示词。记录一下调整好的提示词,以后在继续优化迭代。 1. 提示词 英文版本: You are an AI assistant tasked with extracting the content of

论文翻译:ICLR-2024 PROVING TEST SET CONTAMINATION IN BLACK BOX LANGUAGE MODELS

PROVING TEST SET CONTAMINATION IN BLACK BOX LANGUAGE MODELS https://openreview.net/forum?id=KS8mIvetg2 验证测试集污染在黑盒语言模型中 文章目录 验证测试集污染在黑盒语言模型中摘要1 引言 摘要 大型语言模型是在大量互联网数据上训练的,这引发了人们的担忧和猜测,即它们可能已

OmniGlue论文详解(特征匹配)

OmniGlue论文详解(特征匹配) 摘要1. 引言2. 相关工作2.1. 广义局部特征匹配2.2. 稀疏可学习匹配2.3. 半稠密可学习匹配2.4. 与其他图像表示匹配 3. OmniGlue3.1. 模型概述3.2. OmniGlue 细节3.2.1. 特征提取3.2.2. 利用DINOv2构建图形。3.2.3. 信息传播与新的指导3.2.4. 匹配层和损失函数3.2.5. 与Super

BERT 论文逐段精读【论文精读】

BERT: 近 3 年 NLP 最火 CV: 大数据集上的训练好的 NN 模型,提升 CV 任务的性能 —— ImageNet 的 CNN 模型 NLP: BERT 简化了 NLP 任务的训练,提升了 NLP 任务的性能 BERT 如何站在巨人的肩膀上的?使用了哪些 NLP 已有的技术和思想?哪些是 BERT 的创新? 1标题 + 作者 BERT: Pre-trainin