Proofs for Inner Pairing Products and Applications代码解析

2023-10-10 20:40

本文主要是介绍Proofs for Inner Pairing Products and Applications代码解析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1. 引言

Benedikt Bünz 等人(standford,ethereum,berkeley) 2019年论文《Proofs for Inner Pairing Products and Applications》。

视频介绍:(2020年3月31日)
https://www.youtube.com/watch?v=oYdkGIoHKt0

代码实现:

  • https://github.com/scipr-lab/ripp【本文重点解析本代码库】
  • https://github.com/qope/SIPP(Rust,基于Plonky2和Starky的BN254 pairing以及 ecdsa):在M1 MacBookPro(2021)机器上运行cargo test test_sipp_circuit -r -- --nocapture,基本性能为:【排除circuit building时间,做128个pairing聚合用时约145秒。】
    Aggregating 128 pairings into 1
    Start: cirucit build
    End: circuit build. took 35.545641375s
    Start: proof generation
    End: proof generation. took 145.043526708s
    

注意该代码使用rust stable版本,且低版本可能会报错,建议升级到最新的stable版本:

rustup install stable

代码总体基本结构为:

  • examples:scaling-ipp.rs,执行方式可为cargo run --release --example scaling-ipp 10 20 .
    在这里插入图片描述

  • plot:ipp-scaling.gnuplot为gnuplot脚本,使用examples/scaling-ipp 输出的*.csv作图。

  • src:主源代码。
    – rng.rs:主要实现FiatShamirRng,基于Fiat-Shamir来实现non-interactive proof。【注意,与Merlin实现Fiat-Shamir transform方案有所不同,Merlin transcript是基于STROBE的 封装。Strobe的主要涉及原则为:在任意阶段的密码学输出,除依赖于密钥外,还依赖于之前所有的输入。strobe主要采用对称加密方案,更侧重于简单和安全,而不是速度;noise协议采用非对称加密方案,已在WhatsAPP上落地应用。】(详细参加博客 Merlin——零知识证明(1)理论篇 和博客 strobe——面向IoT物联网应用的密码学协议框架)

/// A `SeedableRng` that refreshes its seed by hashing together the previous seed
/// and the new seed material.
// TODO: later: re-evaluate decision about ChaChaRng
pub struct FiatShamirRng<D: Digest> {r: ChaChaRng,seed: GenericArray<u8, D::OutputSize>,#[doc(hidden)]digest: PhantomData<D>,
}

– lib.rs:实现了论文《Proofs for Inner Pairing Products and Applications》中的SIPP协议。

2. 主要依赖

参见https://github.com/scipr-lab/ripp/blob/master/Cargo.toml中内容,分为[dependencies][dev-dependencies],两者的异同点有:

  • [dev-dependencies]段落的格式等同于[dependencies]段落,
  • 不同之处在于,[dependencies]段落声明的依赖用于构建软件包,
  • 而[dev-dependencies]段落声明的依赖仅用于构建测试和性能评估。
  • 此外,[dev-dependencies]段落声明的依赖不会传递给其他依赖本软件包的项目

[dependencies]依赖主要有:

  • algebra-core = { git = “https://github.com/scipr-lab/zexe”, features = [ “parallel” ] }:为Rust crate that provides generic arithmetic for finite fields and elliptic curves。其中features parallel = [ "std", "rayon" ]
  • rayon:为data-parallelism Rust库。非常轻量,很容易convert a sequential computation into a parallel one。(具体可参加博客 Rayon: data parallelism in Rust)
// sequential iterator
let total_price = stores.iter().map(|store| store.compute_price(&list)).sum();
// parallel iterator
let total_price = stores.par_iter().map(|store| store.compute_price(&list)).sum();
  • rand_core:主要用于实现the core trait:RngCore
  • rand_chacha:为使用ChaCha算法实现的密码学安全的随机数生成器。
  • digest:为https://github.com/RustCrypto/traits中的digest算法。

[dev-dependencies]依赖主要有:

  • blake2:BLAKE2 hash function family库。
  • rand:provides utilities to generate random numbers, to convert them to useful types and distributions, and some randomness-related algorithms.
  • csv:A fast and flexible CSV reader and writer for Rust, with support for Serde.
  • serde = { version = “1”, features = [ “derive” ] }:Serde is a framework for serializing and deserializing Rust data structures efficiently and generically.
  • algebra = { git = “https://github.com/scipr-lab/zexe”, features = [ “bls12_377” ] }:为 Rust crate that provides concrete instantiations of some finite fields and elliptic curves。

3. SIPP协议实现

参见博客 Proofs for Inner Pairing Products and Applications 学习笔记第3.1节“SIPP的构建”。
在这里插入图片描述
lib.rs中的实现为 A ⃗ = { r 1 a 1 , ⋯ , r m a m } , B ⃗ = { b 1 , ⋯ , b m } \vec{A}=\{r_1a_1,\cdots,r_ma_m\},\vec{B}=\{b_1,\cdots,b_m\} A ={r1a1,,rmam},B ={b1,,bm},其中 r i ∈ F r , a i ∈ G 1 , b i ∈ G 2 r_i\in\mathbb{F}_r,a_i\in\mathbb{G}_1,b_i\in\mathbb{G}_2 riFr,aiG1,biG2
在SIPP协议中 A ⃗ , B ⃗ , Z = A ⃗ ∗ B ⃗ = ∏ i = 1 m e ( A i , B i ) \vec{A},\vec{B},Z=\vec{A}*\vec{B}=\prod_{i=1}^{m}e(A_i,B_i) A ,B ,Z=A B =i=1me(Ai,Bi)均为。在实际Verify时,并未逐轮计算 A ⃗ ′ , B ⃗ ′ \vec{A}',\vec{B}' A ,B ,而是将其展开了利用multi_scalar_mul来计算。同时使用FiatShamirRng将interactive proof转为了non-interactive proof。
详细的代码实现为:

  • 初始化 a ⃗ , r ⃗ , B ⃗ \vec{a},\vec{r},\vec{B} a ,r ,B vector信息:
        for _ in 0..32 {a.push(G1Projective::rand(&mut rng).into_affine());b.push(G2Projective::rand(&mut rng).into_affine());r.push(Fr::rand(&mut rng));}
  • 计算 Z = A ⃗ ∗ B ⃗ = ∏ i = 1 m e ( r i a i , B i ) Z=\vec{A}*\vec{B}=\prod_{i=1}^{m}e(r_ia_i,B_i) Z=A B =i=1me(riai,Bi)
let z = product_of_pairings_with_coeffs::<Bls12_377>(&a, &b, &r);/// Compute the product of pairings of `r_i * a_i` and `b_i`.
pub fn product_of_pairings_with_coeffs<E: PairingEngine>(a: &[E::G1Affine],b: &[E::G2Affine],r: &[E::Fr],
) -> E::Fqk {let a = a.into_par_iter().zip(r).map(|(a, r)| a.mul(*r)).collect::<Vec<_>>();let a = E::G1Projective::batch_normalization_into_affine(&a);let elements = a.par_iter().zip(b).map(|(a, b)| (E::G1Prepared::from(*a), E::G2Prepared::from(*b))).collect::<Vec<_>>();let num_chunks = elements.len() / rayon::current_num_threads();let num_chunks = if num_chunks == 0 { elements.len() } else { num_chunks };let ml_result = elements.par_chunks(num_chunks).map(E::miller_loop).product();E::final_exponentiation(&ml_result).unwrap()
}
  • SIPP prove证明:(输入为 a ⃗ , r ⃗ , B ⃗ , Z \vec{a},\vec{r},\vec{B},Z a ,r ,B ,Z
let proof = SIPP::<Bls12_377, Blake2s>::prove(&a, &b, &r, z);/// Produce a proof of the inner pairing product.pub fn prove(a: &[E::G1Affine],b: &[E::G2Affine],r: &[E::Fr],value: E::Fqk) -> Result<Proof<E>, ()> {assert_eq!(a.len(), b.len());// Ensure the order of the input vectors is a power of 2assert_eq!(a.len().count_ones(), 1);let mut length = a.len();assert_eq!(length, b.len());assert_eq!(length.count_ones(), 1);let mut proof_vec = Vec::new();// TODO(psi): should we also input a succinct bilinear group description to the rng?let mut rng = FiatShamirRng::<D>::from_seed(&to_bytes![a, b, r, value].unwrap());let a = a.into_par_iter().zip(r).map(|(a, r)| a.mul(*r)).collect::<Vec<_>>();let mut a = E::G1Projective::batch_normalization_into_affine(&a);let mut b = b.to_vec();while length != 1 {length /= 2;let a_l = &a[..length];let a_r = &a[length..];let b_l = &b[..length];let b_r = &b[length..];let z_l = product_of_pairings::<E>(a_r, b_l);let z_r = product_of_pairings::<E>(a_l, b_r);proof_vec.push((z_l, z_r));rng.absorb(&to_bytes![z_l, z_r].unwrap());let x: E::Fr = u128::rand(&mut rng).into();let a_proj = a_l.par_iter().zip(a_r).map(|(a_l, a_r)| {let mut temp = a_r.mul(x);temp.add_assign_mixed(a_l);temp}).collect::<Vec<_>>();a = E::G1Projective::batch_normalization_into_affine(&a_proj);let x_inv = x.inverse().unwrap();let b_proj = b_l.par_iter().zip(b_r).map(|(b_l, b_r)| {let mut temp = b_r.mul(x_inv);temp.add_assign_mixed(b_l);temp}).collect::<Vec<_>>();b = E::G2Projective::batch_normalization_into_affine(&b_proj);}Ok(Proof {gt_elems: proof_vec})}
  • SIPP verify 验证:(输入为 a ⃗ , r ⃗ , B ⃗ , Z , p r o o f ⃗ \vec{a},\vec{r},\vec{B},Z,\vec{proof} a ,r ,B ,Z,proof
let accept = SIPP::<Bls12_377, Blake2s>::verify(&a, &b, &r, z, &proof);/// Verify an inner-pairing-product proof.pub fn verify(a: &[E::G1Affine],b: &[E::G2Affine],r: &[E::Fr],claimed_value: E::Fqk,proof: &Proof<E>) -> Result<bool, ()> {// Ensure the order of the input vectors is a power of 2let length = a.len();assert_eq!(length.count_ones(), 1);assert!(length >= 2);assert_eq!(length, b.len());// Ensure there are the correct number of proof elementslet proof_len = proof.gt_elems.len();assert_eq!(proof_len as f32, f32::log2(length as f32));// TODO(psi): should we also input a succinct bilinear group description to the rng?let mut rng = FiatShamirRng::<D>::from_seed(&to_bytes![a, b, r, claimed_value].unwrap());let x_s = proof.gt_elems.iter().map(|(z_l, z_r)| {rng.absorb(&to_bytes![z_l, z_r].unwrap());let x: E::Fr = u128::rand(&mut rng).into();x}).collect::<Vec<_>>();let mut x_invs = x_s.clone();algebra_core::batch_inversion(&mut x_invs);let z_prime = claimed_value * &proof.gt_elems.par_iter().zip(&x_s).zip(&x_invs).map(|(((z_l, z_r), x), x_inv)| {z_l.pow(x.into_repr()) * &z_r.pow(x_inv.into_repr())}).reduce(|| E::Fqk::one(), |a, b| a * &b);let mut s: Vec<E::Fr> = vec![E::Fr::one(); length];let mut s_invs: Vec<E::Fr> = vec![E::Fr::one(); length];// TODO(psi): batch verifyfor (j, (x, x_inv)) in x_s.into_iter().zip(x_invs).enumerate() {for i in 0..length {if i & (1 << (proof_len - j - 1)) != 0 {s[i] *= &x;s_invs[i] *= &x_inv;}}}let s = s.into_iter().zip(r).map(|(x, r)| (x * r).into_repr()).collect::<Vec<_>>();let s_invs = s_invs.iter().map(|x_inv| x_inv.into_repr()).collect::<Vec<_>>();let a_prime = VariableBaseMSM::multi_scalar_mul(&a, &s);let b_prime = VariableBaseMSM::multi_scalar_mul(&b, &s_invs);let accept = E::pairing(a_prime, b_prime) == z_prime;Ok(accept)}
}

这篇关于Proofs for Inner Pairing Products and Applications代码解析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/182962

相关文章

nginx -t、nginx -s stop 和 nginx -s reload 命令的详细解析(结合应用场景)

《nginx-t、nginx-sstop和nginx-sreload命令的详细解析(结合应用场景)》本文解析Nginx的-t、-sstop、-sreload命令,分别用于配置语法检... 以下是关于 nginx -t、nginx -s stop 和 nginx -s reload 命令的详细解析,结合实际应

MyBatis中$与#的区别解析

《MyBatis中$与#的区别解析》文章浏览阅读314次,点赞4次,收藏6次。MyBatis使用#{}作为参数占位符时,会创建预处理语句(PreparedStatement),并将参数值作为预处理语句... 目录一、介绍二、sql注入风险实例一、介绍#(井号):MyBATis使用#{}作为参数占位符时,会

PostgreSQL的扩展dict_int应用案例解析

《PostgreSQL的扩展dict_int应用案例解析》dict_int扩展为PostgreSQL提供了专业的整数文本处理能力,特别适合需要精确处理数字内容的搜索场景,本文给大家介绍PostgreS... 目录PostgreSQL的扩展dict_int一、扩展概述二、核心功能三、安装与启用四、字典配置方法

深度解析Java DTO(最新推荐)

《深度解析JavaDTO(最新推荐)》DTO(DataTransferObject)是一种用于在不同层(如Controller层、Service层)之间传输数据的对象设计模式,其核心目的是封装数据,... 目录一、什么是DTO?DTO的核心特点:二、为什么需要DTO?(对比Entity)三、实际应用场景解析

深度解析Java项目中包和包之间的联系

《深度解析Java项目中包和包之间的联系》文章浏览阅读850次,点赞13次,收藏8次。本文详细介绍了Java分层架构中的几个关键包:DTO、Controller、Service和Mapper。_jav... 目录前言一、各大包1.DTO1.1、DTO的核心用途1.2. DTO与实体类(Entity)的区别1

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

Java中调用数据库存储过程的示例代码

《Java中调用数据库存储过程的示例代码》本文介绍Java通过JDBC调用数据库存储过程的方法,涵盖参数类型、执行步骤及数据库差异,需注意异常处理与资源管理,以优化性能并实现复杂业务逻辑,感兴趣的朋友... 目录一、存储过程概述二、Java调用存储过程的基本javascript步骤三、Java调用存储过程示

Visual Studio 2022 编译C++20代码的图文步骤

《VisualStudio2022编译C++20代码的图文步骤》在VisualStudio中启用C++20import功能,需设置语言标准为ISOC++20,开启扫描源查找模块依赖及实验性标... 默认创建Visual Studio桌面控制台项目代码包含C++20的import方法。右键项目的属性:

使用Python绘制3D堆叠条形图全解析

《使用Python绘制3D堆叠条形图全解析》在数据可视化的工具箱里,3D图表总能带来眼前一亮的效果,本文就来和大家聊聊如何使用Python实现绘制3D堆叠条形图,感兴趣的小伙伴可以了解下... 目录为什么选择 3D 堆叠条形图代码实现:从数据到 3D 世界的搭建核心代码逐行解析细节优化应用场景:3D 堆叠图

深度解析Python装饰器常见用法与进阶技巧

《深度解析Python装饰器常见用法与进阶技巧》Python装饰器(Decorator)是提升代码可读性与复用性的强大工具,本文将深入解析Python装饰器的原理,常见用法,进阶技巧与最佳实践,希望可... 目录装饰器的基本原理函数装饰器的常见用法带参数的装饰器类装饰器与方法装饰器装饰器的嵌套与组合进阶技巧