本文主要是介绍Proofs for Inner Pairing Products and Applications代码解析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
1. 引言
Benedikt Bünz 等人(standford,ethereum,berkeley) 2019年论文《Proofs for Inner Pairing Products and Applications》。
视频介绍:(2020年3月31日)
https://www.youtube.com/watch?v=oYdkGIoHKt0
代码实现:
- https://github.com/scipr-lab/ripp【本文重点解析本代码库】
- https://github.com/qope/SIPP(Rust,基于Plonky2和Starky的BN254 pairing以及 ecdsa):在M1 MacBookPro(2021)机器上运行
cargo test test_sipp_circuit -r -- --nocapture
,基本性能为:【排除circuit building时间,做128个pairing聚合用时约145秒。】Aggregating 128 pairings into 1 Start: cirucit build End: circuit build. took 35.545641375s Start: proof generation End: proof generation. took 145.043526708s
注意该代码使用rust stable版本,且低版本可能会报错,建议升级到最新的stable版本:
rustup install stable
代码总体基本结构为:
-
examples:
scaling-ipp.rs
,执行方式可为cargo run --release --example scaling-ipp 10 20 .
-
plot:
ipp-scaling.gnuplot
为gnuplot脚本,使用examples/scaling-ipp 输出的*.csv作图。 -
src:主源代码。
– rng.rs:主要实现FiatShamirRng
,基于Fiat-Shamir来实现non-interactive proof。【注意,与Merlin实现Fiat-Shamir transform方案有所不同,Merlin transcript是基于STROBE的 封装。Strobe的主要涉及原则为:在任意阶段的密码学输出,除依赖于密钥外,还依赖于之前所有的输入。strobe主要采用对称加密方案,更侧重于简单和安全,而不是速度;noise协议采用非对称加密方案,已在WhatsAPP上落地应用。】(详细参加博客 Merlin——零知识证明(1)理论篇 和博客 strobe——面向IoT物联网应用的密码学协议框架)
/// A `SeedableRng` that refreshes its seed by hashing together the previous seed
/// and the new seed material.
// TODO: later: re-evaluate decision about ChaChaRng
pub struct FiatShamirRng<D: Digest> {r: ChaChaRng,seed: GenericArray<u8, D::OutputSize>,#[doc(hidden)]digest: PhantomData<D>,
}
– lib.rs:实现了论文《Proofs for Inner Pairing Products and Applications》中的SIPP协议。
2. 主要依赖
参见https://github.com/scipr-lab/ripp/blob/master/Cargo.toml
中内容,分为[dependencies]
和[dev-dependencies]
,两者的异同点有:
- [dev-dependencies]段落的格式等同于[dependencies]段落,
- 不同之处在于,[dependencies]段落声明的依赖用于构建软件包,
- 而[dev-dependencies]段落声明的依赖仅用于构建测试和性能评估。
- 此外,[dev-dependencies]段落声明的依赖不会传递给其他依赖本软件包的项目
[dependencies]
依赖主要有:
- algebra-core = { git = “https://github.com/scipr-lab/zexe”, features = [ “parallel” ] }:为Rust crate that provides generic arithmetic for finite fields and elliptic curves。其中features
parallel = [ "std", "rayon" ]
。 - rayon:为data-parallelism Rust库。非常轻量,很容易convert a sequential computation into a parallel one。(具体可参加博客 Rayon: data parallelism in Rust)
// sequential iterator
let total_price = stores.iter().map(|store| store.compute_price(&list)).sum();
// parallel iterator
let total_price = stores.par_iter().map(|store| store.compute_price(&list)).sum();
- rand_core:主要用于实现the core trait:
RngCore
。 - rand_chacha:为使用ChaCha算法实现的密码学安全的随机数生成器。
- digest:为
https://github.com/RustCrypto/traits
中的digest算法。
[dev-dependencies]
依赖主要有:
- blake2:BLAKE2 hash function family库。
- rand:provides utilities to generate random numbers, to convert them to useful types and distributions, and some randomness-related algorithms.
- csv:A fast and flexible CSV reader and writer for Rust, with support for Serde.
- serde = { version = “1”, features = [ “derive” ] }:Serde is a framework for serializing and deserializing Rust data structures efficiently and generically.
- algebra = { git = “https://github.com/scipr-lab/zexe”, features = [ “bls12_377” ] }:为 Rust crate that provides concrete instantiations of some finite fields and elliptic curves。
3. SIPP协议实现
参见博客 Proofs for Inner Pairing Products and Applications 学习笔记第3.1节“SIPP的构建”。
在lib.rs
中的实现为 A ⃗ = { r 1 a 1 , ⋯ , r m a m } , B ⃗ = { b 1 , ⋯ , b m } \vec{A}=\{r_1a_1,\cdots,r_ma_m\},\vec{B}=\{b_1,\cdots,b_m\} A={r1a1,⋯,rmam},B={b1,⋯,bm},其中 r i ∈ F r , a i ∈ G 1 , b i ∈ G 2 r_i\in\mathbb{F}_r,a_i\in\mathbb{G}_1,b_i\in\mathbb{G}_2 ri∈Fr,ai∈G1,bi∈G2。
在SIPP协议中 A ⃗ , B ⃗ , Z = A ⃗ ∗ B ⃗ = ∏ i = 1 m e ( A i , B i ) \vec{A},\vec{B},Z=\vec{A}*\vec{B}=\prod_{i=1}^{m}e(A_i,B_i) A,B,Z=A∗B=∏i=1me(Ai,Bi)均为。在实际Verify时,并未逐轮计算 A ⃗ ′ , B ⃗ ′ \vec{A}',\vec{B}' A′,B′,而是将其展开了利用multi_scalar_mul
来计算。同时使用FiatShamirRng
将interactive proof转为了non-interactive proof。
详细的代码实现为:
- 初始化 a ⃗ , r ⃗ , B ⃗ \vec{a},\vec{r},\vec{B} a,r,B vector信息:
for _ in 0..32 {a.push(G1Projective::rand(&mut rng).into_affine());b.push(G2Projective::rand(&mut rng).into_affine());r.push(Fr::rand(&mut rng));}
- 计算 Z = A ⃗ ∗ B ⃗ = ∏ i = 1 m e ( r i a i , B i ) Z=\vec{A}*\vec{B}=\prod_{i=1}^{m}e(r_ia_i,B_i) Z=A∗B=∏i=1me(riai,Bi)
let z = product_of_pairings_with_coeffs::<Bls12_377>(&a, &b, &r);/// Compute the product of pairings of `r_i * a_i` and `b_i`.
pub fn product_of_pairings_with_coeffs<E: PairingEngine>(a: &[E::G1Affine],b: &[E::G2Affine],r: &[E::Fr],
) -> E::Fqk {let a = a.into_par_iter().zip(r).map(|(a, r)| a.mul(*r)).collect::<Vec<_>>();let a = E::G1Projective::batch_normalization_into_affine(&a);let elements = a.par_iter().zip(b).map(|(a, b)| (E::G1Prepared::from(*a), E::G2Prepared::from(*b))).collect::<Vec<_>>();let num_chunks = elements.len() / rayon::current_num_threads();let num_chunks = if num_chunks == 0 { elements.len() } else { num_chunks };let ml_result = elements.par_chunks(num_chunks).map(E::miller_loop).product();E::final_exponentiation(&ml_result).unwrap()
}
- SIPP prove证明:(输入为 a ⃗ , r ⃗ , B ⃗ , Z \vec{a},\vec{r},\vec{B},Z a,r,B,Z)
let proof = SIPP::<Bls12_377, Blake2s>::prove(&a, &b, &r, z);/// Produce a proof of the inner pairing product.pub fn prove(a: &[E::G1Affine],b: &[E::G2Affine],r: &[E::Fr],value: E::Fqk) -> Result<Proof<E>, ()> {assert_eq!(a.len(), b.len());// Ensure the order of the input vectors is a power of 2assert_eq!(a.len().count_ones(), 1);let mut length = a.len();assert_eq!(length, b.len());assert_eq!(length.count_ones(), 1);let mut proof_vec = Vec::new();// TODO(psi): should we also input a succinct bilinear group description to the rng?let mut rng = FiatShamirRng::<D>::from_seed(&to_bytes![a, b, r, value].unwrap());let a = a.into_par_iter().zip(r).map(|(a, r)| a.mul(*r)).collect::<Vec<_>>();let mut a = E::G1Projective::batch_normalization_into_affine(&a);let mut b = b.to_vec();while length != 1 {length /= 2;let a_l = &a[..length];let a_r = &a[length..];let b_l = &b[..length];let b_r = &b[length..];let z_l = product_of_pairings::<E>(a_r, b_l);let z_r = product_of_pairings::<E>(a_l, b_r);proof_vec.push((z_l, z_r));rng.absorb(&to_bytes![z_l, z_r].unwrap());let x: E::Fr = u128::rand(&mut rng).into();let a_proj = a_l.par_iter().zip(a_r).map(|(a_l, a_r)| {let mut temp = a_r.mul(x);temp.add_assign_mixed(a_l);temp}).collect::<Vec<_>>();a = E::G1Projective::batch_normalization_into_affine(&a_proj);let x_inv = x.inverse().unwrap();let b_proj = b_l.par_iter().zip(b_r).map(|(b_l, b_r)| {let mut temp = b_r.mul(x_inv);temp.add_assign_mixed(b_l);temp}).collect::<Vec<_>>();b = E::G2Projective::batch_normalization_into_affine(&b_proj);}Ok(Proof {gt_elems: proof_vec})}
- SIPP verify 验证:(输入为 a ⃗ , r ⃗ , B ⃗ , Z , p r o o f ⃗ \vec{a},\vec{r},\vec{B},Z,\vec{proof} a,r,B,Z,proof)
let accept = SIPP::<Bls12_377, Blake2s>::verify(&a, &b, &r, z, &proof);/// Verify an inner-pairing-product proof.pub fn verify(a: &[E::G1Affine],b: &[E::G2Affine],r: &[E::Fr],claimed_value: E::Fqk,proof: &Proof<E>) -> Result<bool, ()> {// Ensure the order of the input vectors is a power of 2let length = a.len();assert_eq!(length.count_ones(), 1);assert!(length >= 2);assert_eq!(length, b.len());// Ensure there are the correct number of proof elementslet proof_len = proof.gt_elems.len();assert_eq!(proof_len as f32, f32::log2(length as f32));// TODO(psi): should we also input a succinct bilinear group description to the rng?let mut rng = FiatShamirRng::<D>::from_seed(&to_bytes![a, b, r, claimed_value].unwrap());let x_s = proof.gt_elems.iter().map(|(z_l, z_r)| {rng.absorb(&to_bytes![z_l, z_r].unwrap());let x: E::Fr = u128::rand(&mut rng).into();x}).collect::<Vec<_>>();let mut x_invs = x_s.clone();algebra_core::batch_inversion(&mut x_invs);let z_prime = claimed_value * &proof.gt_elems.par_iter().zip(&x_s).zip(&x_invs).map(|(((z_l, z_r), x), x_inv)| {z_l.pow(x.into_repr()) * &z_r.pow(x_inv.into_repr())}).reduce(|| E::Fqk::one(), |a, b| a * &b);let mut s: Vec<E::Fr> = vec![E::Fr::one(); length];let mut s_invs: Vec<E::Fr> = vec![E::Fr::one(); length];// TODO(psi): batch verifyfor (j, (x, x_inv)) in x_s.into_iter().zip(x_invs).enumerate() {for i in 0..length {if i & (1 << (proof_len - j - 1)) != 0 {s[i] *= &x;s_invs[i] *= &x_inv;}}}let s = s.into_iter().zip(r).map(|(x, r)| (x * r).into_repr()).collect::<Vec<_>>();let s_invs = s_invs.iter().map(|x_inv| x_inv.into_repr()).collect::<Vec<_>>();let a_prime = VariableBaseMSM::multi_scalar_mul(&a, &s);let b_prime = VariableBaseMSM::multi_scalar_mul(&b, &s_invs);let accept = E::pairing(a_prime, b_prime) == z_prime;Ok(accept)}
}
这篇关于Proofs for Inner Pairing Products and Applications代码解析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!