Proofs for Inner Pairing Products and Applications代码解析

2023-10-10 20:40

本文主要是介绍Proofs for Inner Pairing Products and Applications代码解析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1. 引言

Benedikt Bünz 等人(standford,ethereum,berkeley) 2019年论文《Proofs for Inner Pairing Products and Applications》。

视频介绍:(2020年3月31日)
https://www.youtube.com/watch?v=oYdkGIoHKt0

代码实现:

  • https://github.com/scipr-lab/ripp【本文重点解析本代码库】
  • https://github.com/qope/SIPP(Rust,基于Plonky2和Starky的BN254 pairing以及 ecdsa):在M1 MacBookPro(2021)机器上运行cargo test test_sipp_circuit -r -- --nocapture,基本性能为:【排除circuit building时间,做128个pairing聚合用时约145秒。】
    Aggregating 128 pairings into 1
    Start: cirucit build
    End: circuit build. took 35.545641375s
    Start: proof generation
    End: proof generation. took 145.043526708s
    

注意该代码使用rust stable版本,且低版本可能会报错,建议升级到最新的stable版本:

rustup install stable

代码总体基本结构为:

  • examples:scaling-ipp.rs,执行方式可为cargo run --release --example scaling-ipp 10 20 .
    在这里插入图片描述

  • plot:ipp-scaling.gnuplot为gnuplot脚本,使用examples/scaling-ipp 输出的*.csv作图。

  • src:主源代码。
    – rng.rs:主要实现FiatShamirRng,基于Fiat-Shamir来实现non-interactive proof。【注意,与Merlin实现Fiat-Shamir transform方案有所不同,Merlin transcript是基于STROBE的 封装。Strobe的主要涉及原则为:在任意阶段的密码学输出,除依赖于密钥外,还依赖于之前所有的输入。strobe主要采用对称加密方案,更侧重于简单和安全,而不是速度;noise协议采用非对称加密方案,已在WhatsAPP上落地应用。】(详细参加博客 Merlin——零知识证明(1)理论篇 和博客 strobe——面向IoT物联网应用的密码学协议框架)

/// A `SeedableRng` that refreshes its seed by hashing together the previous seed
/// and the new seed material.
// TODO: later: re-evaluate decision about ChaChaRng
pub struct FiatShamirRng<D: Digest> {r: ChaChaRng,seed: GenericArray<u8, D::OutputSize>,#[doc(hidden)]digest: PhantomData<D>,
}

– lib.rs:实现了论文《Proofs for Inner Pairing Products and Applications》中的SIPP协议。

2. 主要依赖

参见https://github.com/scipr-lab/ripp/blob/master/Cargo.toml中内容,分为[dependencies][dev-dependencies],两者的异同点有:

  • [dev-dependencies]段落的格式等同于[dependencies]段落,
  • 不同之处在于,[dependencies]段落声明的依赖用于构建软件包,
  • 而[dev-dependencies]段落声明的依赖仅用于构建测试和性能评估。
  • 此外,[dev-dependencies]段落声明的依赖不会传递给其他依赖本软件包的项目

[dependencies]依赖主要有:

  • algebra-core = { git = “https://github.com/scipr-lab/zexe”, features = [ “parallel” ] }:为Rust crate that provides generic arithmetic for finite fields and elliptic curves。其中features parallel = [ "std", "rayon" ]
  • rayon:为data-parallelism Rust库。非常轻量,很容易convert a sequential computation into a parallel one。(具体可参加博客 Rayon: data parallelism in Rust)
// sequential iterator
let total_price = stores.iter().map(|store| store.compute_price(&list)).sum();
// parallel iterator
let total_price = stores.par_iter().map(|store| store.compute_price(&list)).sum();
  • rand_core:主要用于实现the core trait:RngCore
  • rand_chacha:为使用ChaCha算法实现的密码学安全的随机数生成器。
  • digest:为https://github.com/RustCrypto/traits中的digest算法。

[dev-dependencies]依赖主要有:

  • blake2:BLAKE2 hash function family库。
  • rand:provides utilities to generate random numbers, to convert them to useful types and distributions, and some randomness-related algorithms.
  • csv:A fast and flexible CSV reader and writer for Rust, with support for Serde.
  • serde = { version = “1”, features = [ “derive” ] }:Serde is a framework for serializing and deserializing Rust data structures efficiently and generically.
  • algebra = { git = “https://github.com/scipr-lab/zexe”, features = [ “bls12_377” ] }:为 Rust crate that provides concrete instantiations of some finite fields and elliptic curves。

3. SIPP协议实现

参见博客 Proofs for Inner Pairing Products and Applications 学习笔记第3.1节“SIPP的构建”。
在这里插入图片描述
lib.rs中的实现为 A ⃗ = { r 1 a 1 , ⋯ , r m a m } , B ⃗ = { b 1 , ⋯ , b m } \vec{A}=\{r_1a_1,\cdots,r_ma_m\},\vec{B}=\{b_1,\cdots,b_m\} A ={r1a1,,rmam},B ={b1,,bm},其中 r i ∈ F r , a i ∈ G 1 , b i ∈ G 2 r_i\in\mathbb{F}_r,a_i\in\mathbb{G}_1,b_i\in\mathbb{G}_2 riFr,aiG1,biG2
在SIPP协议中 A ⃗ , B ⃗ , Z = A ⃗ ∗ B ⃗ = ∏ i = 1 m e ( A i , B i ) \vec{A},\vec{B},Z=\vec{A}*\vec{B}=\prod_{i=1}^{m}e(A_i,B_i) A ,B ,Z=A B =i=1me(Ai,Bi)均为。在实际Verify时,并未逐轮计算 A ⃗ ′ , B ⃗ ′ \vec{A}',\vec{B}' A ,B ,而是将其展开了利用multi_scalar_mul来计算。同时使用FiatShamirRng将interactive proof转为了non-interactive proof。
详细的代码实现为:

  • 初始化 a ⃗ , r ⃗ , B ⃗ \vec{a},\vec{r},\vec{B} a ,r ,B vector信息:
        for _ in 0..32 {a.push(G1Projective::rand(&mut rng).into_affine());b.push(G2Projective::rand(&mut rng).into_affine());r.push(Fr::rand(&mut rng));}
  • 计算 Z = A ⃗ ∗ B ⃗ = ∏ i = 1 m e ( r i a i , B i ) Z=\vec{A}*\vec{B}=\prod_{i=1}^{m}e(r_ia_i,B_i) Z=A B =i=1me(riai,Bi)
let z = product_of_pairings_with_coeffs::<Bls12_377>(&a, &b, &r);/// Compute the product of pairings of `r_i * a_i` and `b_i`.
pub fn product_of_pairings_with_coeffs<E: PairingEngine>(a: &[E::G1Affine],b: &[E::G2Affine],r: &[E::Fr],
) -> E::Fqk {let a = a.into_par_iter().zip(r).map(|(a, r)| a.mul(*r)).collect::<Vec<_>>();let a = E::G1Projective::batch_normalization_into_affine(&a);let elements = a.par_iter().zip(b).map(|(a, b)| (E::G1Prepared::from(*a), E::G2Prepared::from(*b))).collect::<Vec<_>>();let num_chunks = elements.len() / rayon::current_num_threads();let num_chunks = if num_chunks == 0 { elements.len() } else { num_chunks };let ml_result = elements.par_chunks(num_chunks).map(E::miller_loop).product();E::final_exponentiation(&ml_result).unwrap()
}
  • SIPP prove证明:(输入为 a ⃗ , r ⃗ , B ⃗ , Z \vec{a},\vec{r},\vec{B},Z a ,r ,B ,Z
let proof = SIPP::<Bls12_377, Blake2s>::prove(&a, &b, &r, z);/// Produce a proof of the inner pairing product.pub fn prove(a: &[E::G1Affine],b: &[E::G2Affine],r: &[E::Fr],value: E::Fqk) -> Result<Proof<E>, ()> {assert_eq!(a.len(), b.len());// Ensure the order of the input vectors is a power of 2assert_eq!(a.len().count_ones(), 1);let mut length = a.len();assert_eq!(length, b.len());assert_eq!(length.count_ones(), 1);let mut proof_vec = Vec::new();// TODO(psi): should we also input a succinct bilinear group description to the rng?let mut rng = FiatShamirRng::<D>::from_seed(&to_bytes![a, b, r, value].unwrap());let a = a.into_par_iter().zip(r).map(|(a, r)| a.mul(*r)).collect::<Vec<_>>();let mut a = E::G1Projective::batch_normalization_into_affine(&a);let mut b = b.to_vec();while length != 1 {length /= 2;let a_l = &a[..length];let a_r = &a[length..];let b_l = &b[..length];let b_r = &b[length..];let z_l = product_of_pairings::<E>(a_r, b_l);let z_r = product_of_pairings::<E>(a_l, b_r);proof_vec.push((z_l, z_r));rng.absorb(&to_bytes![z_l, z_r].unwrap());let x: E::Fr = u128::rand(&mut rng).into();let a_proj = a_l.par_iter().zip(a_r).map(|(a_l, a_r)| {let mut temp = a_r.mul(x);temp.add_assign_mixed(a_l);temp}).collect::<Vec<_>>();a = E::G1Projective::batch_normalization_into_affine(&a_proj);let x_inv = x.inverse().unwrap();let b_proj = b_l.par_iter().zip(b_r).map(|(b_l, b_r)| {let mut temp = b_r.mul(x_inv);temp.add_assign_mixed(b_l);temp}).collect::<Vec<_>>();b = E::G2Projective::batch_normalization_into_affine(&b_proj);}Ok(Proof {gt_elems: proof_vec})}
  • SIPP verify 验证:(输入为 a ⃗ , r ⃗ , B ⃗ , Z , p r o o f ⃗ \vec{a},\vec{r},\vec{B},Z,\vec{proof} a ,r ,B ,Z,proof
let accept = SIPP::<Bls12_377, Blake2s>::verify(&a, &b, &r, z, &proof);/// Verify an inner-pairing-product proof.pub fn verify(a: &[E::G1Affine],b: &[E::G2Affine],r: &[E::Fr],claimed_value: E::Fqk,proof: &Proof<E>) -> Result<bool, ()> {// Ensure the order of the input vectors is a power of 2let length = a.len();assert_eq!(length.count_ones(), 1);assert!(length >= 2);assert_eq!(length, b.len());// Ensure there are the correct number of proof elementslet proof_len = proof.gt_elems.len();assert_eq!(proof_len as f32, f32::log2(length as f32));// TODO(psi): should we also input a succinct bilinear group description to the rng?let mut rng = FiatShamirRng::<D>::from_seed(&to_bytes![a, b, r, claimed_value].unwrap());let x_s = proof.gt_elems.iter().map(|(z_l, z_r)| {rng.absorb(&to_bytes![z_l, z_r].unwrap());let x: E::Fr = u128::rand(&mut rng).into();x}).collect::<Vec<_>>();let mut x_invs = x_s.clone();algebra_core::batch_inversion(&mut x_invs);let z_prime = claimed_value * &proof.gt_elems.par_iter().zip(&x_s).zip(&x_invs).map(|(((z_l, z_r), x), x_inv)| {z_l.pow(x.into_repr()) * &z_r.pow(x_inv.into_repr())}).reduce(|| E::Fqk::one(), |a, b| a * &b);let mut s: Vec<E::Fr> = vec![E::Fr::one(); length];let mut s_invs: Vec<E::Fr> = vec![E::Fr::one(); length];// TODO(psi): batch verifyfor (j, (x, x_inv)) in x_s.into_iter().zip(x_invs).enumerate() {for i in 0..length {if i & (1 << (proof_len - j - 1)) != 0 {s[i] *= &x;s_invs[i] *= &x_inv;}}}let s = s.into_iter().zip(r).map(|(x, r)| (x * r).into_repr()).collect::<Vec<_>>();let s_invs = s_invs.iter().map(|x_inv| x_inv.into_repr()).collect::<Vec<_>>();let a_prime = VariableBaseMSM::multi_scalar_mul(&a, &s);let b_prime = VariableBaseMSM::multi_scalar_mul(&b, &s_invs);let accept = E::pairing(a_prime, b_prime) == z_prime;Ok(accept)}
}

这篇关于Proofs for Inner Pairing Products and Applications代码解析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/182962

相关文章

Flutter监听当前页面可见与隐藏状态的代码详解

《Flutter监听当前页面可见与隐藏状态的代码详解》文章介绍了如何在Flutter中使用路由观察者来监听应用进入前台或后台状态以及页面的显示和隐藏,并通过代码示例讲解的非常详细,需要的朋友可以参考下... flutter 可以监听 app 进入前台还是后台状态,也可以监听当http://www.cppcn

Python使用PIL库将PNG图片转换为ICO图标的示例代码

《Python使用PIL库将PNG图片转换为ICO图标的示例代码》在软件开发和网站设计中,ICO图标是一种常用的图像格式,特别适用于应用程序图标、网页收藏夹图标等场景,本文将介绍如何使用Python的... 目录引言准备工作代码解析实践操作结果展示结语引言在软件开发和网站设计中,ICO图标是一种常用的图像

IDEA与JDK、Maven安装配置完整步骤解析

《IDEA与JDK、Maven安装配置完整步骤解析》:本文主要介绍如何安装和配置IDE(IntelliJIDEA),包括IDE的安装步骤、JDK的下载与配置、Maven的安装与配置,以及如何在I... 目录1. IDE安装步骤2.配置操作步骤3. JDK配置下载JDK配置JDK环境变量4. Maven配置下

Python中配置文件的全面解析与使用

《Python中配置文件的全面解析与使用》在Python开发中,配置文件扮演着举足轻重的角色,它们允许开发者在不修改代码的情况下调整应用程序的行为,下面我们就来看看常见Python配置文件格式的使用吧... 目录一、INI配置文件二、YAML配置文件三、jsON配置文件四、TOML配置文件五、XML配置文件

Spring中@Lazy注解的使用技巧与实例解析

《Spring中@Lazy注解的使用技巧与实例解析》@Lazy注解在Spring框架中用于延迟Bean的初始化,优化应用启动性能,它不仅适用于@Bean和@Component,还可以用于注入点,通过将... 目录一、@Lazy注解的作用(一)延迟Bean的初始化(二)与@Autowired结合使用二、实例解

Java中有什么工具可以进行代码反编译详解

《Java中有什么工具可以进行代码反编译详解》:本文主要介绍Java中有什么工具可以进行代码反编译的相关资,料,包括JD-GUI、CFR、Procyon、Fernflower、Javap、Byte... 目录1.JD-GUI2.CFR3.Procyon Decompiler4.Fernflower5.Jav

javaScript在表单提交时获取表单数据的示例代码

《javaScript在表单提交时获取表单数据的示例代码》本文介绍了五种在JavaScript中获取表单数据的方法:使用FormData对象、手动提取表单数据、使用querySelector获取单个字... 方法 1:使用 FormData 对象FormData 是一个方便的内置对象,用于获取表单中的键值

Vue ElementUI中Upload组件批量上传的实现代码

《VueElementUI中Upload组件批量上传的实现代码》ElementUI中Upload组件批量上传通过获取upload组件的DOM、文件、上传地址和数据,封装uploadFiles方法,使... ElementUI中Upload组件如何批量上传首先就是upload组件 <el-upl

C++使用栈实现括号匹配的代码详解

《C++使用栈实现括号匹配的代码详解》在编程中,括号匹配是一个常见问题,尤其是在处理数学表达式、编译器解析等任务时,栈是一种非常适合处理此类问题的数据结构,能够精确地管理括号的匹配问题,本文将通过C+... 目录引言问题描述代码讲解代码解析栈的状态表示测试总结引言在编程中,括号匹配是一个常见问题,尤其是在

Java调用DeepSeek API的最佳实践及详细代码示例

《Java调用DeepSeekAPI的最佳实践及详细代码示例》:本文主要介绍如何使用Java调用DeepSeekAPI,包括获取API密钥、添加HTTP客户端依赖、创建HTTP请求、处理响应、... 目录1. 获取API密钥2. 添加HTTP客户端依赖3. 创建HTTP请求4. 处理响应5. 错误处理6.