Proofs for Inner Pairing Products and Applications代码解析

2023-10-10 20:40

本文主要是介绍Proofs for Inner Pairing Products and Applications代码解析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1. 引言

Benedikt Bünz 等人(standford,ethereum,berkeley) 2019年论文《Proofs for Inner Pairing Products and Applications》。

视频介绍:(2020年3月31日)
https://www.youtube.com/watch?v=oYdkGIoHKt0

代码实现:

  • https://github.com/scipr-lab/ripp【本文重点解析本代码库】
  • https://github.com/qope/SIPP(Rust,基于Plonky2和Starky的BN254 pairing以及 ecdsa):在M1 MacBookPro(2021)机器上运行cargo test test_sipp_circuit -r -- --nocapture,基本性能为:【排除circuit building时间,做128个pairing聚合用时约145秒。】
    Aggregating 128 pairings into 1
    Start: cirucit build
    End: circuit build. took 35.545641375s
    Start: proof generation
    End: proof generation. took 145.043526708s
    

注意该代码使用rust stable版本,且低版本可能会报错,建议升级到最新的stable版本:

rustup install stable

代码总体基本结构为:

  • examples:scaling-ipp.rs,执行方式可为cargo run --release --example scaling-ipp 10 20 .
    在这里插入图片描述

  • plot:ipp-scaling.gnuplot为gnuplot脚本,使用examples/scaling-ipp 输出的*.csv作图。

  • src:主源代码。
    – rng.rs:主要实现FiatShamirRng,基于Fiat-Shamir来实现non-interactive proof。【注意,与Merlin实现Fiat-Shamir transform方案有所不同,Merlin transcript是基于STROBE的 封装。Strobe的主要涉及原则为:在任意阶段的密码学输出,除依赖于密钥外,还依赖于之前所有的输入。strobe主要采用对称加密方案,更侧重于简单和安全,而不是速度;noise协议采用非对称加密方案,已在WhatsAPP上落地应用。】(详细参加博客 Merlin——零知识证明(1)理论篇 和博客 strobe——面向IoT物联网应用的密码学协议框架)

/// A `SeedableRng` that refreshes its seed by hashing together the previous seed
/// and the new seed material.
// TODO: later: re-evaluate decision about ChaChaRng
pub struct FiatShamirRng<D: Digest> {r: ChaChaRng,seed: GenericArray<u8, D::OutputSize>,#[doc(hidden)]digest: PhantomData<D>,
}

– lib.rs:实现了论文《Proofs for Inner Pairing Products and Applications》中的SIPP协议。

2. 主要依赖

参见https://github.com/scipr-lab/ripp/blob/master/Cargo.toml中内容,分为[dependencies][dev-dependencies],两者的异同点有:

  • [dev-dependencies]段落的格式等同于[dependencies]段落,
  • 不同之处在于,[dependencies]段落声明的依赖用于构建软件包,
  • 而[dev-dependencies]段落声明的依赖仅用于构建测试和性能评估。
  • 此外,[dev-dependencies]段落声明的依赖不会传递给其他依赖本软件包的项目

[dependencies]依赖主要有:

  • algebra-core = { git = “https://github.com/scipr-lab/zexe”, features = [ “parallel” ] }:为Rust crate that provides generic arithmetic for finite fields and elliptic curves。其中features parallel = [ "std", "rayon" ]
  • rayon:为data-parallelism Rust库。非常轻量,很容易convert a sequential computation into a parallel one。(具体可参加博客 Rayon: data parallelism in Rust)
// sequential iterator
let total_price = stores.iter().map(|store| store.compute_price(&list)).sum();
// parallel iterator
let total_price = stores.par_iter().map(|store| store.compute_price(&list)).sum();
  • rand_core:主要用于实现the core trait:RngCore
  • rand_chacha:为使用ChaCha算法实现的密码学安全的随机数生成器。
  • digest:为https://github.com/RustCrypto/traits中的digest算法。

[dev-dependencies]依赖主要有:

  • blake2:BLAKE2 hash function family库。
  • rand:provides utilities to generate random numbers, to convert them to useful types and distributions, and some randomness-related algorithms.
  • csv:A fast and flexible CSV reader and writer for Rust, with support for Serde.
  • serde = { version = “1”, features = [ “derive” ] }:Serde is a framework for serializing and deserializing Rust data structures efficiently and generically.
  • algebra = { git = “https://github.com/scipr-lab/zexe”, features = [ “bls12_377” ] }:为 Rust crate that provides concrete instantiations of some finite fields and elliptic curves。

3. SIPP协议实现

参见博客 Proofs for Inner Pairing Products and Applications 学习笔记第3.1节“SIPP的构建”。
在这里插入图片描述
lib.rs中的实现为 A ⃗ = { r 1 a 1 , ⋯ , r m a m } , B ⃗ = { b 1 , ⋯ , b m } \vec{A}=\{r_1a_1,\cdots,r_ma_m\},\vec{B}=\{b_1,\cdots,b_m\} A ={r1a1,,rmam},B ={b1,,bm},其中 r i ∈ F r , a i ∈ G 1 , b i ∈ G 2 r_i\in\mathbb{F}_r,a_i\in\mathbb{G}_1,b_i\in\mathbb{G}_2 riFr,aiG1,biG2
在SIPP协议中 A ⃗ , B ⃗ , Z = A ⃗ ∗ B ⃗ = ∏ i = 1 m e ( A i , B i ) \vec{A},\vec{B},Z=\vec{A}*\vec{B}=\prod_{i=1}^{m}e(A_i,B_i) A ,B ,Z=A B =i=1me(Ai,Bi)均为。在实际Verify时,并未逐轮计算 A ⃗ ′ , B ⃗ ′ \vec{A}',\vec{B}' A ,B ,而是将其展开了利用multi_scalar_mul来计算。同时使用FiatShamirRng将interactive proof转为了non-interactive proof。
详细的代码实现为:

  • 初始化 a ⃗ , r ⃗ , B ⃗ \vec{a},\vec{r},\vec{B} a ,r ,B vector信息:
        for _ in 0..32 {a.push(G1Projective::rand(&mut rng).into_affine());b.push(G2Projective::rand(&mut rng).into_affine());r.push(Fr::rand(&mut rng));}
  • 计算 Z = A ⃗ ∗ B ⃗ = ∏ i = 1 m e ( r i a i , B i ) Z=\vec{A}*\vec{B}=\prod_{i=1}^{m}e(r_ia_i,B_i) Z=A B =i=1me(riai,Bi)
let z = product_of_pairings_with_coeffs::<Bls12_377>(&a, &b, &r);/// Compute the product of pairings of `r_i * a_i` and `b_i`.
pub fn product_of_pairings_with_coeffs<E: PairingEngine>(a: &[E::G1Affine],b: &[E::G2Affine],r: &[E::Fr],
) -> E::Fqk {let a = a.into_par_iter().zip(r).map(|(a, r)| a.mul(*r)).collect::<Vec<_>>();let a = E::G1Projective::batch_normalization_into_affine(&a);let elements = a.par_iter().zip(b).map(|(a, b)| (E::G1Prepared::from(*a), E::G2Prepared::from(*b))).collect::<Vec<_>>();let num_chunks = elements.len() / rayon::current_num_threads();let num_chunks = if num_chunks == 0 { elements.len() } else { num_chunks };let ml_result = elements.par_chunks(num_chunks).map(E::miller_loop).product();E::final_exponentiation(&ml_result).unwrap()
}
  • SIPP prove证明:(输入为 a ⃗ , r ⃗ , B ⃗ , Z \vec{a},\vec{r},\vec{B},Z a ,r ,B ,Z
let proof = SIPP::<Bls12_377, Blake2s>::prove(&a, &b, &r, z);/// Produce a proof of the inner pairing product.pub fn prove(a: &[E::G1Affine],b: &[E::G2Affine],r: &[E::Fr],value: E::Fqk) -> Result<Proof<E>, ()> {assert_eq!(a.len(), b.len());// Ensure the order of the input vectors is a power of 2assert_eq!(a.len().count_ones(), 1);let mut length = a.len();assert_eq!(length, b.len());assert_eq!(length.count_ones(), 1);let mut proof_vec = Vec::new();// TODO(psi): should we also input a succinct bilinear group description to the rng?let mut rng = FiatShamirRng::<D>::from_seed(&to_bytes![a, b, r, value].unwrap());let a = a.into_par_iter().zip(r).map(|(a, r)| a.mul(*r)).collect::<Vec<_>>();let mut a = E::G1Projective::batch_normalization_into_affine(&a);let mut b = b.to_vec();while length != 1 {length /= 2;let a_l = &a[..length];let a_r = &a[length..];let b_l = &b[..length];let b_r = &b[length..];let z_l = product_of_pairings::<E>(a_r, b_l);let z_r = product_of_pairings::<E>(a_l, b_r);proof_vec.push((z_l, z_r));rng.absorb(&to_bytes![z_l, z_r].unwrap());let x: E::Fr = u128::rand(&mut rng).into();let a_proj = a_l.par_iter().zip(a_r).map(|(a_l, a_r)| {let mut temp = a_r.mul(x);temp.add_assign_mixed(a_l);temp}).collect::<Vec<_>>();a = E::G1Projective::batch_normalization_into_affine(&a_proj);let x_inv = x.inverse().unwrap();let b_proj = b_l.par_iter().zip(b_r).map(|(b_l, b_r)| {let mut temp = b_r.mul(x_inv);temp.add_assign_mixed(b_l);temp}).collect::<Vec<_>>();b = E::G2Projective::batch_normalization_into_affine(&b_proj);}Ok(Proof {gt_elems: proof_vec})}
  • SIPP verify 验证:(输入为 a ⃗ , r ⃗ , B ⃗ , Z , p r o o f ⃗ \vec{a},\vec{r},\vec{B},Z,\vec{proof} a ,r ,B ,Z,proof
let accept = SIPP::<Bls12_377, Blake2s>::verify(&a, &b, &r, z, &proof);/// Verify an inner-pairing-product proof.pub fn verify(a: &[E::G1Affine],b: &[E::G2Affine],r: &[E::Fr],claimed_value: E::Fqk,proof: &Proof<E>) -> Result<bool, ()> {// Ensure the order of the input vectors is a power of 2let length = a.len();assert_eq!(length.count_ones(), 1);assert!(length >= 2);assert_eq!(length, b.len());// Ensure there are the correct number of proof elementslet proof_len = proof.gt_elems.len();assert_eq!(proof_len as f32, f32::log2(length as f32));// TODO(psi): should we also input a succinct bilinear group description to the rng?let mut rng = FiatShamirRng::<D>::from_seed(&to_bytes![a, b, r, claimed_value].unwrap());let x_s = proof.gt_elems.iter().map(|(z_l, z_r)| {rng.absorb(&to_bytes![z_l, z_r].unwrap());let x: E::Fr = u128::rand(&mut rng).into();x}).collect::<Vec<_>>();let mut x_invs = x_s.clone();algebra_core::batch_inversion(&mut x_invs);let z_prime = claimed_value * &proof.gt_elems.par_iter().zip(&x_s).zip(&x_invs).map(|(((z_l, z_r), x), x_inv)| {z_l.pow(x.into_repr()) * &z_r.pow(x_inv.into_repr())}).reduce(|| E::Fqk::one(), |a, b| a * &b);let mut s: Vec<E::Fr> = vec![E::Fr::one(); length];let mut s_invs: Vec<E::Fr> = vec![E::Fr::one(); length];// TODO(psi): batch verifyfor (j, (x, x_inv)) in x_s.into_iter().zip(x_invs).enumerate() {for i in 0..length {if i & (1 << (proof_len - j - 1)) != 0 {s[i] *= &x;s_invs[i] *= &x_inv;}}}let s = s.into_iter().zip(r).map(|(x, r)| (x * r).into_repr()).collect::<Vec<_>>();let s_invs = s_invs.iter().map(|x_inv| x_inv.into_repr()).collect::<Vec<_>>();let a_prime = VariableBaseMSM::multi_scalar_mul(&a, &s);let b_prime = VariableBaseMSM::multi_scalar_mul(&b, &s_invs);let accept = E::pairing(a_prime, b_prime) == z_prime;Ok(accept)}
}

这篇关于Proofs for Inner Pairing Products and Applications代码解析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/182962

相关文章

vscode保存代码时自动eslint格式化图文教程

《vscode保存代码时自动eslint格式化图文教程》:本文主要介绍vscode保存代码时自动eslint格式化的相关资料,包括打开设置文件并复制特定内容,文中通过代码介绍的非常详细,需要的朋友... 目录1、点击设置2、选择远程--->点击右上角打开设置3、会弹出settings.json文件,将以下内

SQL Server使用SELECT INTO实现表备份的代码示例

《SQLServer使用SELECTINTO实现表备份的代码示例》在数据库管理过程中,有时我们需要对表进行备份,以防数据丢失或修改错误,在SQLServer中,可以使用SELECTINT... 在数据库管理过程中,有时我们需要对表进行备份,以防数据丢失或修改错误。在 SQL Server 中,可以使用 SE

Linux中shell解析脚本的通配符、元字符、转义符说明

《Linux中shell解析脚本的通配符、元字符、转义符说明》:本文主要介绍shell通配符、元字符、转义符以及shell解析脚本的过程,通配符用于路径扩展,元字符用于多命令分割,转义符用于将特殊... 目录一、linux shell通配符(wildcard)二、shell元字符(特殊字符 Meta)三、s

python实现pdf转word和excel的示例代码

《python实现pdf转word和excel的示例代码》本文主要介绍了python实现pdf转word和excel的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录一、引言二、python编程1,PDF转Word2,PDF转Excel三、前端页面效果展示总结一

在MyBatis的XML映射文件中<trim>元素所有场景下的完整使用示例代码

《在MyBatis的XML映射文件中<trim>元素所有场景下的完整使用示例代码》在MyBatis的XML映射文件中,trim元素用于动态添加SQL语句的一部分,处理前缀、后缀及多余的逗号或连接符,示... 在MyBATis的XML映射文件中,<trim>元素用于动态地添加SQL语句的一部分,例如SET或W

使用C#代码计算数学表达式实例

《使用C#代码计算数学表达式实例》这段文字主要讲述了如何使用C#语言来计算数学表达式,该程序通过使用Dictionary保存变量,定义了运算符优先级,并实现了EvaluateExpression方法来... 目录C#代码计算数学表达式该方法很长,因此我将分段描述下面的代码片段显示了下一步以下代码显示该方法如

python多进程实现数据共享的示例代码

《python多进程实现数据共享的示例代码》本文介绍了Python中多进程实现数据共享的方法,包括使用multiprocessing模块和manager模块这两种方法,具有一定的参考价值,感兴趣的可以... 目录背景进程、进程创建进程间通信 进程间共享数据共享list实践背景 安卓ui自动化框架,使用的是

使用Python实现批量访问URL并解析XML响应功能

《使用Python实现批量访问URL并解析XML响应功能》在现代Web开发和数据抓取中,批量访问URL并解析响应内容是一个常见的需求,本文将详细介绍如何使用Python实现批量访问URL并解析XML响... 目录引言1. 背景与需求2. 工具方法实现2.1 单URL访问与解析代码实现代码说明2.2 示例调用

SSID究竟是什么? WiFi网络名称及工作方式解析

《SSID究竟是什么?WiFi网络名称及工作方式解析》SID可以看作是无线网络的名称,类似于有线网络中的网络名称或者路由器的名称,在无线网络中,设备通过SSID来识别和连接到特定的无线网络... 当提到 Wi-Fi 网络时,就避不开「SSID」这个术语。简单来说,SSID 就是 Wi-Fi 网络的名称。比如

SpringBoot生成和操作PDF的代码详解

《SpringBoot生成和操作PDF的代码详解》本文主要介绍了在SpringBoot项目下,通过代码和操作步骤,详细的介绍了如何操作PDF,希望可以帮助到准备通过JAVA操作PDF的你,项目框架用的... 目录本文简介PDF文件简介代码实现PDF操作基于PDF模板生成,并下载完全基于代码生成,并保存合并P