python circular doubly linked list

2023-10-10 14:40

本文主要是介绍python circular doubly linked list,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

python的双向链表

  • 需求
  • 番外

最近写装饰器看了 functools.lru_cache 的源码1,里面发现了这样的代码:

    root = []                # root of the circular doubly linked listroot[:] = [root, root, None, None]     # initialize by pointing to self

类似的代码之前在 collections.OrderedDict 的源码里见过,之前也写过相关文章2 ,但再看依然理解不深,于是今天再来聊聊这个。

需求

  • lru_cache

    首先是记录和调整顺序(插入移动删除),由双向链表来实现;其次是通过键查询到值,由哈希表来实现。

  • OrderedDict

    先讲个题外话,虽然自 Python 3.7 之后,字典的顺序会确保为插入顺序,但是 OrderedDict 并没有被干掉,搜了下只发现了这个答案3,它谈到了 OrderedDict.move_to_end() 和比较相等时的顺序敏感性。
    那么 OrderedDict 需要啥呢,本质上和上面一样,哈希表查找快,但是数据无固定顺序;链表有顺序之分,插入删除快,但是查找慢,结合一下就是哈希双向链表。

在这里插入图片描述

因为经常需要对队头和队尾进行操作,为了简化算法,设置一个哨兵节点 root

    PREV, NEXT, KEY, RESULT = 0, 1, 2, 3   # names for the link fieldsroot = []                # root of the circular doubly linked listroot[:] = [root, root, None, None]     # initialize by pointing to self

root[PERV] 表示队尾的节点, root[NEXT] 表示队头的节点。

下面是一些操作

# 添加节点到队尾
# Put result in a new link at the front of the queue.
last = root[PREV]
link = [last, root, key, result]
last[NEXT] = root[PREV] = cache[key] = link# 移动节点到队尾
# Move the link to the front of the circular queue
link_prev, link_next, _key, result = link
link_prev[NEXT] = link_next
link_next[PREV] = link_prev
last = root[PREV]
last[NEXT] = root[PREV] = link
link[PREV] = last
link[NEXT] = root# 删除头节点并添加节点到队尾 这里把要删除的节点的key/result清空 变成新的哨兵节点 
# 旧哨兵节点直接存入添加节点的key/result
# Use the old root to store the new key and result.
oldroot = root
oldroot[KEY] = key
oldroot[RESULT] = result
# Empty the oldest link and make it the new root.
# Keep a reference to the old key and old result to
# prevent their ref counts from going to zero during the
# update. That will prevent potentially arbitrary object
# clean-up code (i.e. __del__) from running while we're
# still adjusting the links.
root = oldroot[NEXT]
oldkey = root[KEY]
oldresult = root[RESULT]
root[KEY] = root[RESULT] = None
# Now update the cache dictionary.
del cache[oldkey]
# Save the potentially reentrant cache[key] assignment
# for last, after the root and links have been put in
# a consistent state.
cache[key] = oldroot

关于 collections.OrderedDict 为什么舍弃掉这种写法,而使用了节点类和弱引用,我想就是因为 OrderedDict 里面有一些删除操作,在循环引用下可能会有内存的问题。

可以看到 lru_cache 装饰器里没有删除单个节点的操作,当缓存数量达到 maxsize 时,优化的算法没有先删除再添加,而是修改节点然后移动哨兵节点的位置。

番外

对函数传入的参数做哈希可以参考源码这部分,当然参数必须是可哈希的

class _HashedSeq(list):""" This class guarantees that hash() will be called no more than onceper element.  This is important because the lru_cache() will hashthe key multiple times on a cache miss."""__slots__ = 'hashvalue'def __init__(self, tup, hash=hash):self[:] = tupself.hashvalue = hash(tup)def __hash__(self):return self.hashvaluedef _make_key(args, kwds, typed,kwd_mark = (object(),),fasttypes = {int, str},tuple=tuple, type=type, len=len):"""Make a cache key from optionally typed positional and keyword argumentsThe key is constructed in a way that is flat as possible rather thanas a nested structure that would take more memory.If there is only a single argument and its data type is known to cacheits hash value, then that argument is returned without a wrapper.  Thissaves space and improves lookup speed."""# All of code below relies on kwds preserving the order input by the user.# Formerly, we sorted() the kwds before looping.  The new way is *much*# faster; however, it means that f(x=1, y=2) will now be treated as a# distinct call from f(y=2, x=1) which will be cached separately.key = argsif kwds:key += kwd_markfor item in kwds.items():key += itemif typed:key += tuple(type(v) for v in args)if kwds:key += tuple(type(v) for v in kwds.values())elif len(key) == 1 and type(key[0]) in fasttypes:return key[0]return _HashedSeq(key)

最后贴两篇也是分析 lru_cache 源码的文章4 5,别人都会实现双向链表,我好菜呜呜呜~

其他存替换策略(cache replacement policies)6


  1. https://github.com/python/cpython/blob/main/Lib/functools.py#L427 ↩︎

  2. https://blog.csdn.net/qq_41967784/article/details/105370492 ↩︎

  3. https://stackoverflow.com/a/50872567 ↩︎

  4. https://blog.51cto.com/nu1l/3584159 ↩︎

  5. https://www.cnblogs.com/TM0831/p/13268327.html ↩︎

  6. https://en.wikipedia.org/wiki/Cache_replacement_policies ↩︎

这篇关于python circular doubly linked list的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/181121

相关文章

SpringBoot分段处理List集合多线程批量插入数据方式

《SpringBoot分段处理List集合多线程批量插入数据方式》文章介绍如何处理大数据量List批量插入数据库的优化方案:通过拆分List并分配独立线程处理,结合Spring线程池与异步方法提升效率... 目录项目场景解决方案1.实体类2.Mapper3.spring容器注入线程池bejsan对象4.创建

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

Python正则表达式匹配和替换的操作指南

《Python正则表达式匹配和替换的操作指南》正则表达式是处理文本的强大工具,Python通过re模块提供了完整的正则表达式功能,本文将通过代码示例详细介绍Python中的正则匹配和替换操作,需要的朋... 目录基础语法导入re模块基本元字符常用匹配方法1. re.match() - 从字符串开头匹配2.

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

通过Docker容器部署Python环境的全流程

《通过Docker容器部署Python环境的全流程》在现代化开发流程中,Docker因其轻量化、环境隔离和跨平台一致性的特性,已成为部署Python应用的标准工具,本文将详细演示如何通过Docker容... 目录引言一、docker与python的协同优势二、核心步骤详解三、进阶配置技巧四、生产环境最佳实践

Python一次性将指定版本所有包上传PyPI镜像解决方案

《Python一次性将指定版本所有包上传PyPI镜像解决方案》本文主要介绍了一个安全、完整、可离线部署的解决方案,用于一次性准备指定Python版本的所有包,然后导出到内网环境,感兴趣的小伙伴可以跟随... 目录为什么需要这个方案完整解决方案1. 项目目录结构2. 创建智能下载脚本3. 创建包清单生成脚本4

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函

python获取指定名字的程序的文件路径的两种方法

《python获取指定名字的程序的文件路径的两种方法》本文主要介绍了python获取指定名字的程序的文件路径的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 最近在做项目,需要用到给定一个程序名字就可以自动获取到这个程序在Windows系统下的绝对路径,以下

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

Python实现批量CSV转Excel的高性能处理方案

《Python实现批量CSV转Excel的高性能处理方案》在日常办公中,我们经常需要将CSV格式的数据转换为Excel文件,本文将介绍一个基于Python的高性能解决方案,感兴趣的小伙伴可以跟随小编一... 目录一、场景需求二、技术方案三、核心代码四、批量处理方案五、性能优化六、使用示例完整代码七、小结一、