python自学成才之路 死锁的解决方案

2023-10-09 21:59

本文主要是介绍python自学成才之路 死锁的解决方案,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

以下内容是我阅读cookbook上的死锁解决方案的读后感,感觉上面的思想很不错,想给大家分享下,我在其中加了一些我自己的理解,感兴趣的话可以阅读原文:
https://python3-cookbook.readthedocs.io/zh_CN/latest/c12/p05_locking_with_deadlock_avoidance.html#id3

关于死锁有一个经典的问题,”哲学家就餐问题“,题目是这样的:五位哲学家围坐在一张桌子前,每个人 面前有一碗饭和一只筷子。在这里每个哲学家可以看做是一个独立的线程,而每只筷子可以看做是一个锁。每个哲学家可以处在静坐、 思考、吃饭三种状态中的一个。需要注意的是,每个哲学家吃饭是需要两只筷子的,这样问题就来了:如果每个哲学家都拿起自己左边的筷子, 那么他们五个都只能拿着一只筷子坐在那儿,直到饿死。此时他们就进入了死锁状态。

解决死锁最好的方法是避免死锁。不要等问题发生了再去解决,而是在源头上避免发生问题。出现死锁的充要条件是形成一个环,所以如果在并发开发的时候,不要让环形成,死锁产生的条件满足不了,是不是就避免了死锁。

解决方案:
主要目的是避免形成环,可以这样做,给每个锁分配一个唯一的id,然后只允许按照升序的规则来使用多个锁。举个例子:有十个锁L1~L10,三个线程t1,t2,t3。t1需要L1,L2,L5,L6四个锁,t2需要L3,L5,L6,L9,四个锁,t3需要L1,L4,L7,L8,L9,L10五个锁。这三个线程每次申请锁的时候都按照自己的需要顺序去申请锁,由于这些锁的申请过程都是按照顺序来的,即使部分锁是多个线程需要的,但是顶多会出现等待的情况,不会出现死锁。如何让锁的获取是按照顺序来?可以通过上下文管理器来实现,对于上下文管理器可以看下我之前的文章。


import threading
from contextlib import contextmanager# 定义一个线程本地对象
_local = threading.local()@contextmanager
def acquire(*locks):# 该线程需要获取的锁按照id做一个排序locks = sorted(locks, key=lambda x: id(x))# 确保这些锁获取是有序的,如果出现无序则抛出异常acquired = getattr(_local,'acquired',[])if acquired and max(id(lock) for lock in acquired) >= id(locks[0]):raise RuntimeError('Lock Order Violation')# 将获取到的锁放到线程本地对象上acquired.extend(locks)_local.acquired = acquiredtry:for lock in locks:lock.acquire()yieldfinally:# 所有的锁使用完之后,按照倒序的方式进行释放,也就是从大到小的顺序进行释放for lock in reversed(locks):lock.release()del acquired[-len(locks):]

这段代码从语法的角度来看可能有两个地方不理解,一个是@contextmanager这个注解,这是上下文管理器的注解,作用和with是一样的,关于这一段可以查看我之前的文章。

第二个不好理解的地方是acquired = getattr(_local,‘acquired’,[])这段代码,这段代码的意思是获取线程本地对象的acquired这个属性,如果没有这个属性则创建一个这样的属性,并赋予初始值[]。

怎么去使用这个上下文管理器呢?看下面这个案例,有三个线程,每个线程都需要申请多个锁,他们申请的锁有些是三个线程都需要的有些是每个线程各自独有的,这些锁都通个acquire这个上下文管理器来获取。


import timea_lock = threading.Lock()
b_lock = threading.Lock()
c_lock = threading.Lock()
d_lock = threading.Lock()
e_lock = threading.Lock()
f_lock = threading.Lock()
g_lock = threading.Lock()def thread_1():while True:with acquire(a_lock, b_lock, e_lock):print('Thread-1')def thread_2():while True:with acquire(c_lock, d_lock, e_lock, f_lock):print('Thread-2')def thread_3():while True:with acquire(a_lock, b_lock, e_lock, f_lock, g_lock):print('Thread-3')t1 = threading.Thread(target=thread_1)
t1.daemon = True
t1.start()t2 = threading.Thread(target=thread_2)
t2.daemon = True
t2.start()t3 = threading.Thread(target=thread_3)
t3.daemon = True
t3.start()time.sleep(200)

这一段代码是不会发生死锁的,因为所有的锁申请过程都是按照顺序来申请的,不会出现环。

如果把这段代码改成下面这样,就会抛出异常。

def thread_1():while True:with acquire(a_lock):with acquire(e_lock):with acquire(b_lock):print('Thread-1')def thread_2():while True:with acquire(c_lock):with acquire(f_lock):with acquire(d_lock):print('Thread-2')t1 = threading.Thread(target=thread_1)
t1.daemon = True
t1.start()t2 = threading.Thread(target=thread_2)
t2.daemon = True
t2.start()time.sleep(10)输出:
RuntimeError: Lock Order Violationraise RuntimeError('Lock Order Violation')
RuntimeError: Lock Order Violation

原因是两个线程申请锁的过程不是有序的,申请过程要么把这些锁放在一个acquire里面申请,要么嵌套申请的时候按照顺序来嵌套申请。否则申请出现顺序错误就会抛出异常。

再回到文章开头的哲学家问题,怎么让这些哲学家能吃上饭呢?每个哲学家需要两只筷子才能吃上饭,我们让哲学家按照我们提供的规则去申请筷子。

def philosopher(left, right):while True:with acquire(left,right):print(threading.currentThread(), 'eating')# 创建五只筷子
NSTICKS = 5
chopsticks = [threading.Lock() for n in range(NSTICKS)]# 模拟哲学家线程
for n in range(NSTICKS):t = threading.Thread(target=philosopher,args=(chopsticks[n],chopsticks[(n+1) % NSTICKS]))t.start()

每只筷子都有它的编号,哲学家只能按照顺序来取筷子,不会形成环,所以最终每个哲学家都能吃上饭。



本人是做大数据开发的,在微信上开了个个人号,会经常在上面分享一些学习心得,原创文章都会首发到公众号上,感兴趣的盆友可以关注下哦!
在这里插入图片描述
备注:微信公众号搜索‘大数据入坑指南‘

这篇关于python自学成才之路 死锁的解决方案的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/175839

相关文章

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

【Python编程】Linux创建虚拟环境并配置与notebook相连接

1.创建 使用 venv 创建虚拟环境。例如,在当前目录下创建一个名为 myenv 的虚拟环境: python3 -m venv myenv 2.激活 激活虚拟环境使其成为当前终端会话的活动环境。运行: source myenv/bin/activate 3.与notebook连接 在虚拟环境中,使用 pip 安装 Jupyter 和 ipykernel: pip instal

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

nudepy,一个有趣的 Python 库!

更多资料获取 📚 个人网站:ipengtao.com 大家好,今天为大家分享一个有趣的 Python 库 - nudepy。 Github地址:https://github.com/hhatto/nude.py 在图像处理和计算机视觉应用中,检测图像中的不适当内容(例如裸露图像)是一个重要的任务。nudepy 是一个基于 Python 的库,专门用于检测图像中的不适当内容。该

pip-tools:打造可重复、可控的 Python 开发环境,解决依赖关系,让代码更稳定

在 Python 开发中,管理依赖关系是一项繁琐且容易出错的任务。手动更新依赖版本、处理冲突、确保一致性等等,都可能让开发者感到头疼。而 pip-tools 为开发者提供了一套稳定可靠的解决方案。 什么是 pip-tools? pip-tools 是一组命令行工具,旨在简化 Python 依赖关系的管理,确保项目环境的稳定性和可重复性。它主要包含两个核心工具:pip-compile 和 pip

HTML提交表单给python

python 代码 from flask import Flask, request, render_template, redirect, url_forapp = Flask(__name__)@app.route('/')def form():# 渲染表单页面return render_template('./index.html')@app.route('/submit_form',

js异步提交form表单的解决方案

1.定义异步提交表单的方法 (通用方法) /*** 异步提交form表单* @param options {form:form表单元素,success:执行成功后处理函数}* <span style="color:#ff0000;"><strong>@注意 后台接收参数要解码否则中文会导致乱码 如:URLDecoder.decode(param,"UTF-8")</strong></span>

Python QT实现A-star寻路算法

目录 1、界面使用方法 2、注意事项 3、补充说明 用Qt5搭建一个图形化测试寻路算法的测试环境。 1、界面使用方法 设定起点: 鼠标左键双击,设定红色的起点。左键双击设定起点,用红色标记。 设定终点: 鼠标右键双击,设定蓝色的终点。右键双击设定终点,用蓝色标记。 设置障碍点: 鼠标左键或者右键按着不放,拖动可以设置黑色的障碍点。按住左键或右键并拖动,设置一系列黑色障碍点

Python:豆瓣电影商业数据分析-爬取全数据【附带爬虫豆瓣,数据处理过程,数据分析,可视化,以及完整PPT报告】

**爬取豆瓣电影信息,分析近年电影行业的发展情况** 本文是完整的数据分析展现,代码有完整版,包含豆瓣电影爬取的具体方式【附带爬虫豆瓣,数据处理过程,数据分析,可视化,以及完整PPT报告】   最近MBA在学习《商业数据分析》,大实训作业给了数据要进行数据分析,所以先拿豆瓣电影练练手,网络上爬取豆瓣电影TOP250较多,但对于豆瓣电影全数据的爬取教程很少,所以我自己做一版。 目