python自学成才之路 线程间协作之Semaphore,threading.local()

2023-10-09 21:59

本文主要是介绍python自学成才之路 线程间协作之Semaphore,threading.local(),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

信号量
信号量用来控制线程并发数的,信号量里面维护了一个计数器,这个计数器可以理解为锁的数量,线程通过acquire方法去申请锁,每申请到一个锁,计数器就减1。线程通过release释放锁,每释放一个锁,计数器就加1。当计数器为0的时候,通过acquire方法去申请锁会被阻塞,直到有其它的线程释放锁让计数器不为0才有可能申请到锁。

信号量有两种BoundedSemaphore或Semaphore,用Semaphore举个栗子:


import threading, timeclass myThread(threading.Thread):def run(self):semaphore.acquire()print(threading.currentThread().name + " 获得锁")time.sleep(1)print(threading.currentThread().name + " 释放锁")semaphore.release()if __name__ == "__main__":semaphore = threading.Semaphore(2)for i in range(6):myThread().start()
输出:
Thread-1 获得锁
Thread-2 获得锁
Thread-1 释放锁
Thread-2 释放锁
Thread-3 获得锁
Thread-4 获得锁
Thread-4 释放锁
Thread-5 获得锁
Thread-3 释放锁
Thread-6 获得锁
Thread-6 释放锁
Thread-5 释放锁

BoundedSemaphore或Semaphore的用法几乎是一样的,这两个信号量有什么区别呢?要想明白这两个信号量的区别,得先弄明白release这个方法。其实任何一个线程都可以调用release方法,即使这个线程没有获取过锁,并且一个线程可以多次调用release,任意一个线程调用release方法都是有效的。前面说过线程每调用一次release方法,信号量内部的计数器都会加1,所以会出现由于线程调用release次数过多,导致计数器的值大于信号量计数器的初始值。Semaphore对内部的计数器是没有限制的,但是BoundedSemaphore有限制,BoundedSemaphore内部的计数器大于初始值时会报错。


class MyThread(threading.Thread):def run(self):# semaphore.acquire()# print(threading.currentThread().name + " 获得锁")print(threading.currentThread().name + " 释放锁")# 连续释放三次锁semaphore.release()semaphore.release()semaphore.release()class MyAcquire(threading.Thread):def run(self):semaphore.acquire()time.sleep(5)print(threading.currentThread().name + " 获得锁")if __name__ == "__main__":semaphore = threading.Semaphore(1)MyThread().start()for i in range(4):MyAcquire().start()输出:
Thread-1 释放锁
Thread-2 获得锁
Thread-5 获得锁
Thread-4 获得锁
Thread-3 获得锁

上面这个案例中,使用Semaphore信号量,一个线程多次释放锁,使得其它几个线程都能获取到锁。如果将Semaphore改成BoundedSemaphore,这个程序就会报错,因为BoundedSemaphore设置的计数器初始值是1,连续三次释放信号量肯定会使计数器的值大于1,而BoundedSemaphore是不允许计数器的值大于初始值,所以会抛出异常。程序里面是为了演示效果,所以让一个线程多次释放,实际使用的时候不要这么做,最好是线程获取一次信号量再释放一次信号量。

threading.local()
threading.local()是一个全局对象,每个线程使用threading.local()都能创建属于当前线程特有的属性。举个简单的栗子:

import threadinga = threading.local()def worker():a.x = 0a.x += 1print(threading.currentThread().name, a.x)for i in range(3):threading.Thread(target=worker).start()
输出:
Thread-1 1
Thread-2 1
Thread-3 1输出:
AttributeError: '_thread._local' object has no attribute 'y'

上面这个例子中加了一个a.y属性,这个属性只属于主线程,所以再其它线程中访问a.y的时候就报错了(AttributeError: ‘_thread._local’ object has no attribute ‘y’)。这进一步说明每个线程可以在threading.local()里面添加属于当前线程的特有属性,这些属性对其它线程是不可见的。

这是怎么实现的呢?其实Threading.local()内部维护了一个(key,dict)这么一个映射,每个线程在使用threading.local()时都会分配一个key,线程添加的属性都会存在dict里面,由于这个映射的存在,每个线程能且只能访问自己添加的属性。



本人是做大数据开发的,在微信上开了个个人号,会经常在上面分享一些学习心得,原创文章都会首发到公众号上,感兴趣的盆友可以关注下哦!
在这里插入图片描述
备注:微信公众号搜索‘大数据入坑指南

这篇关于python自学成才之路 线程间协作之Semaphore,threading.local()的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/175838

相关文章

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

【Python编程】Linux创建虚拟环境并配置与notebook相连接

1.创建 使用 venv 创建虚拟环境。例如,在当前目录下创建一个名为 myenv 的虚拟环境: python3 -m venv myenv 2.激活 激活虚拟环境使其成为当前终端会话的活动环境。运行: source myenv/bin/activate 3.与notebook连接 在虚拟环境中,使用 pip 安装 Jupyter 和 ipykernel: pip instal

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

nudepy,一个有趣的 Python 库!

更多资料获取 📚 个人网站:ipengtao.com 大家好,今天为大家分享一个有趣的 Python 库 - nudepy。 Github地址:https://github.com/hhatto/nude.py 在图像处理和计算机视觉应用中,检测图像中的不适当内容(例如裸露图像)是一个重要的任务。nudepy 是一个基于 Python 的库,专门用于检测图像中的不适当内容。该

AI基础 L9 Local Search II 局部搜索

Local Beam search 对于当前的所有k个状态,生成它们的所有可能后继状态。 检查生成的后继状态中是否有任何状态是解决方案。 如果所有后继状态都不是解决方案,则从所有后继状态中选择k个最佳状态。 当达到预设的迭代次数或满足某个终止条件时,算法停止。 — Choose k successors randomly, biased towards good ones — Close

pip-tools:打造可重复、可控的 Python 开发环境,解决依赖关系,让代码更稳定

在 Python 开发中,管理依赖关系是一项繁琐且容易出错的任务。手动更新依赖版本、处理冲突、确保一致性等等,都可能让开发者感到头疼。而 pip-tools 为开发者提供了一套稳定可靠的解决方案。 什么是 pip-tools? pip-tools 是一组命令行工具,旨在简化 Python 依赖关系的管理,确保项目环境的稳定性和可重复性。它主要包含两个核心工具:pip-compile 和 pip

HTML提交表单给python

python 代码 from flask import Flask, request, render_template, redirect, url_forapp = Flask(__name__)@app.route('/')def form():# 渲染表单页面return render_template('./index.html')@app.route('/submit_form',

线程的四种操作

所属专栏:Java学习        1. 线程的开启 start和run的区别: run:描述了线程要执行的任务,也可以称为线程的入口 start:调用系统函数,真正的在系统内核中创建线程(创建PCB,加入到链表中),此处的start会根据不同的系统,分别调用不同的api,创建好之后的线程,再单独去执行run(所以说,start的本质是调用系统api,系统的api

Python QT实现A-star寻路算法

目录 1、界面使用方法 2、注意事项 3、补充说明 用Qt5搭建一个图形化测试寻路算法的测试环境。 1、界面使用方法 设定起点: 鼠标左键双击,设定红色的起点。左键双击设定起点,用红色标记。 设定终点: 鼠标右键双击,设定蓝色的终点。右键双击设定终点,用蓝色标记。 设置障碍点: 鼠标左键或者右键按着不放,拖动可以设置黑色的障碍点。按住左键或右键并拖动,设置一系列黑色障碍点