机器学习中的数学符号及其读法

2023-10-09 11:48

本文主要是介绍机器学习中的数学符号及其读法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

数学符号及读法大全


常用数学输入符号: 

≈ ≡≠= ≤≥ < > ≮ ≯ ∷ ±+ - × ÷ / ∫∮ ∝ ∞

 ∧ ∨ ∑∏∪ ∩ ∈ ∵ ∴  ⊥ ‖ ∠ ⌒  ≌ ∽ √  

() 【】{} Ⅰ Ⅱ ⊕ ⊙∥α β γ δ ε ζ η θ Δ



大写

小写

英文注音

国际音标注音

中文注音

Α

α

alpha

alfa

阿耳法

Β

β

beta

beta

贝塔

Γ

γ

gamma

gamma

伽马

Δ

δ

deta

delta

德耳塔

Ε

ε

epsilon

epsilon

艾普西隆

Ζ

ζ

zeta

zeta

截塔

Η

η

eta

eta

艾塔

Θ

θ

theta

θita

西塔

Ι

ι

iota

iota

约塔

Κ

κ

kappa

kappa

卡帕

λ

lambda

lambda

兰姆达

Μ

μ

mu

miu

Ν

ν

nu

niu

Ξ

ξ

xi

ksi

可塞

Ο

ο

omicron

omikron

奥密可戎

π

pi

pai

Ρ

ρ

rho

rou

σ

sigma

sigma

西格马

Τ

τ

tau

tau

Υ

υ

upsilon

jupsilon

衣普西隆

Φ

φ

phi

fai

Χ

χ

chi

khai

Ψ

ψ

psi

psai

普西

Ω

ω

omega

omiga

欧米

 


符号

含义

i

-1的平方根

f(x)

函数f在自变量x处的值

sin(x)

在自变量x处的正弦函数值

exp(x)

在自变量x处的指数函数值,常被写作ex

a^x

a的x次方;有理数x由反函数定义

ln x

exp x 的反函数

ax

同 a^x

logba

以b为底a的对数; blogba = a

cos x

在自变量x处余弦函数的值

tan x

其值等于 sin x/cos x

cot x

余切函数的值或 cos x/sin x

sec x

正割含数的值,其值等于 1/cos x

csc x

余割函数的值,其值等于 1/sin x

asin x

y,正弦函数反函数在x处的值,即 x = sin y

acos x

y,余弦函数反函数在x处的值,即 x = cos y

atan x

y,正切函数反函数在x处的值,即 x = tan y

acot x

y,余切函数反函数在x处的值,即 x = cot y

asec x

y,正割函数反函数在x处的值,即 x = sec y

acsc x

y,余割函数反函数在x处的值,即 x = csc y

θ

角度的一个标准符号,不注明均指弧度,尤其用于表示atan x/y,当x、y、z用于表示空间中的点时

i, j, k

分别表示x、y、z方向上的单位向量

(a, b, c)

以a、b、c为元素的向量

(a, b)

以a、b为元素的向量

(a, b)

a、b向量的点积

a•b

a、b向量的点积

(a•b)

a、b向量的点积

|v|

向量v的模

|x|

数x的绝对值

Σ

表示求和,通常是某项指数。下边界值写在其下部,上边界值写在其上部。如j从1到100 的和可以表示成:。这表示 1 + 2 + … + n

M

表示一个矩阵或数列或其它

|v>

列向量,即元素被写成列或可被看成k×1阶矩阵的向量

<v|

被写成行或可被看成从1×k阶矩阵的向量

dx

变量x的一个无穷小变化,dy, dz, dr等类似

ds

长度的微小变化

ρ

变量 (x2 + y2 + z2)1/2 或球面坐标系中到原点的距离

r

变量 (x2 + y2)1/2 或三维空间或极坐标中到z轴的距离

|M|

矩阵M的行列式,其值是矩阵的行和列决定的平行区域的面积或体积

||M||

矩阵M的行列式的值,为一个面积、体积或超体积

det M

M的行列式

M-1

矩阵M的逆矩阵

v×w

向量v和w的向量积或叉积

θvw

向量v和w之间的夹角

A•B×C

标量三重积,以A、B、C为列的矩阵的行列式

uw

在向量w方向上的单位向量,即 w/|w|

df

函数f的微小变化,足够小以至适合于所有相关函数的线性近似

df/dx

f关于x的导数,同时也是f的线性近似斜率

f '

函数f关于相应自变量的导数,自变量通常为x

∂f/∂x

y、z固定时f关于x的偏导数。通常f关于某变量q的偏导数为当其它几个变量固定时df 与dq的比值。任何可能导致变量混淆的地方都应明确地表述

(∂f/∂x)|r,z

保持r和z不变时,f关于x的偏导数

grad f

元素分别为f关于x、y、z偏导数 [(∂f/∂x), (∂f/∂y), (∂f/∂z)] 或 (∂f/∂x)i + (∂f/∂y)j + (∂f/∂z)k; 的向量场,称为f的梯度

向量算子(∂/∂x)i + (∂/∂x)j + (∂/∂x)k, 读作 "del"

∇f

f的梯度;它和 uw 的点积为f在w方向上的方向导数

∇•w

向量场w的散度,为向量算子∇ 同向量 w的点积, 或 (∂wx /∂x) + (∂wy /∂y) + (∂wz /∂z)

curl w

向量算子 ∇ 同向量 w 的叉积

∇×w

w的旋度,其元素为[(∂fz /∂y) - (∂fy /∂z), (∂fx /∂z) - (∂fz /∂x), (∂fy /∂x) - (∂fx /∂y)]

∇•∇

拉普拉斯微分算子: (∂2/∂x2) + (∂/∂y2) + (∂/∂z2)

f "(x)

f关于x的二阶导数,f '(x)的导数

d2f/dx2

f关于x的二阶导数

f(2)(x)

同样也是f关于x的二阶导数

f(k)(x)

f关于x的第k阶导数,f(k-1) (x)的导数

T

曲线切线方向上的单位向量,如果曲线可以描述成 r(t), 则T = (dr/dt)/|dr/dt|

ds

沿曲线方向距离的导数

κ

曲线的曲率,单位切线向量相对曲线距离的导数的值:|dT/ds|

N

dT/ds投影方向单位向量,垂直于T

B

平面T和N的单位法向量,即曲率的平面

τ

曲线的扭率: |dB/ds|

g

重力常数

F

力学中力的标准符号

k

弹簧的弹簧常数

pi

第i个物体的动量

H

物理系统的哈密尔敦函数,即位置和动量表示的能量

{Q, H}

Q, H的泊松括号

 

以一个关于x的函数的形式表达的f(x)的积分

 

函数f 从a到b的定积分。当f是正的且 a < b 时表示由x轴和直线y = a, y = b 及在这些直线之间的函数曲线所围起来图形的面积

L(d)

相等子区间大小为d,每个子区间左端点的值为 f的黎曼和

R(d)

相等子区间大小为d,每个子区间右端点的值为 f的黎曼和

M(d)

相等子区间大小为d,每个子区间上的最大值为 f的黎曼和

m(d)

相等子区间大小为d,每个子区间上的最小值为 f的黎曼和



 ≈≡≠=≤≥<>≮≯∷±+-×÷/∫∮∝∞∧∨∑∏∪∩∈∵∴⊥‖∠⌒⊙≌∽√  



+:          plus(positive正的)
-:        minus(negative负的)
*:        multiplied by
÷:        divided by
=:         be equal to
≈:         be approximately equal to
():         round brackets(parenthess)
[]:         square brackets
{}:         braces
∵:         because
∴:         therefore
≤:         less than or equal to
≥:         greater than or equal to
∞:         infinity
LOGnX:    logx to the base n
xn:         the nth power of x
f(x):          thefunction of x
dx:         diffrencial of x
x+y:        x plus y
(a+b):      bracket a plus b bracketclosed
a=b:        a equals b
a≠b:      a isn't equal to b
a>b :       a is greater than b
a>>b:      a is much greater than b
a≥b:       a is greater than or equal to b
x→∞:    approches infinity
x2:         x square
x3:         x cube
√ ̄x:      thesquare root of x
3√ ̄x:    the cube root of x
3‰:    three peimill
n∑i=1xi: the summation of x where x goes from 1to n
n∏i=1xi: the product of x sub i where igoes from 1to n
∫ab:        integral betweens a and b

数学符号(理科符号)——运算符号  
 1.基本符号:+ - × ÷(/)  
2.分数号:/  
3.正负号:±  
4.相似全等:∽ ≌  
5.因为所以:∵ ∴  
6.判断类:= ≠ < ≮(不小于) > ≯(不大于)  
7.集合类:∈(属于) ∪(并集) ∩(交集)  
8.求和符号:∑  
9.n次方符号:¹(一次方) ²(平方) ³(立方) ⁴(4次方) ⁿ(n次方)  
10.下角标:₁ ₂ ₃ ₄  
(如:A₁B₂C₃D₄ 效果如何?)  
11.或与非的"非":¬  
12.导数符号(备注符号):′ 〃  
13.度:° ℃  
14.任意:∀  
15.推出号:⇒  
16.等价号:⇔  
17.包含被包含:⊆ ⊇ ⊂ ⊃  
18.导数:∫ ∬  
19.箭头类:↗ ↙ ↖ ↘ ↑ ↓ ↔ ↕ ↑ ↓ → ←  
20.绝对值:|  
21.弧:⌒  
22.圆:⊙ 11.或与非的"非":¬  
12.导数符号(备注符号):′ 〃  
13.度:° ℃  
14.任意:∀  
15.推出号:⇒  
16.等价号:⇔  
17.包含被包含:⊆ ⊇ ⊂ ⊃  
18.导数:∫ ∬  
19.箭头类:↗ ↙ ↖ ↘ ↑ ↓ ↔ ↕ ↑ ↓ → ←  
20.绝对值:|  
21.弧:⌒  
22.圆:⊙ 

这篇关于机器学习中的数学符号及其读法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/172632

相关文章

使用C#代码计算数学表达式实例

《使用C#代码计算数学表达式实例》这段文字主要讲述了如何使用C#语言来计算数学表达式,该程序通过使用Dictionary保存变量,定义了运算符优先级,并实现了EvaluateExpression方法来... 目录C#代码计算数学表达式该方法很长,因此我将分段描述下面的代码片段显示了下一步以下代码显示该方法如

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

uva 10014 Simple calculations(数学推导)

直接按照题意来推导最后的结果就行了。 开始的时候只做到了第一个推导,第二次没有继续下去。 代码: #include<stdio.h>int main(){int T, n, i;double a, aa, sum, temp, ans;scanf("%d", &T);while(T--){scanf("%d", &n);scanf("%lf", &first);scanf

uva 10025 The ? 1 ? 2 ? ... ? n = k problem(数学)

题意是    ?  1  ?  2  ?  ...  ?  n = k 式子中给k,? 处可以填 + 也可以填 - ,问最小满足条件的n。 e.g k = 12  - 1 + 2 + 3 + 4 + 5 + 6 - 7 = 12 with n = 7。 先给证明,令 S(n) = 1 + 2 + 3 + 4 + 5 + .... + n 暴搜n,搜出当 S(n) >=

uva 11044 Searching for Nessy(小学数学)

题意是给出一个n*m的格子,求出里面有多少个不重合的九宫格。 (rows / 3) * (columns / 3) K.o 代码: #include <stdio.h>int main(){int ncase;scanf("%d", &ncase);while (ncase--){int rows, columns;scanf("%d%d", &rows, &col