OpenRisc-4-ORSoC跑linux实验

2023-10-07 09:58
文章标签 linux 实验 openrisc orsoc

本文主要是介绍OpenRisc-4-ORSoC跑linux实验,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

引言

光说不练假把式,本小节就用官方的FPGA开发板跑一下linux。

 

4.1,  实验准备

1》  orsoc的工具链环境(gcc,gdbjtag),搭建过程见上一篇blog:

http://blog.csdn.net/rill_zhen/article/details/8443882

2》  ep4ce22FPGA开发板(€:149)

3》  micro-USB连接线

 

4.2,  实验步骤

0》连线。将板子左上方的那个USB口与PC相连。

1》  烧写RTL综合后的电路逻辑文件(也可自己用quartus综合)

$ cd /home/openrisc

$ jtag ./program_fpga.jtag

2》开启gdbdebuggerOR processor间的代理服务

$ /opt/or_debug_proxy/bin/or_debug_proxy –r 55555

3》  (再开一个终端)打开一个串口终端

picocom –b 115200–p n –d 8 –f xon /dev/ttyUSB2

4》  (再开一个终端)开启gdb来下载vmlinux镜像

$ cd ~/soc-design/linux

$ make ARCH=openrisc defconfig

$ make ARCH=openrisc

$ or32-elf-gdb

(gdb) target remote :55555

(gdb) file ./vmlinux

Answer ‘y’

(gdb) load

(gdb) spr npc 0x100

(gdb) c

5》此时,看picocom那个终端,可以看到linux的启动过程:如下图:

6》此时链接网线,设置网卡(eth8)参数,就可以和PC通过网络通信了。

 

 

 

4.3 参考文档

Running_SW_on_FPGA_board.txt:

 

 

===========================================================
Running Software on Hardware
===========================================================This FPGA development board has been developed specifically 
to fit a OpenRISC processor design, with the smallest form-factor 
and lowest cost.The board is called: ordb2a-ep4ce22 (OpenRisc Development Board 2A)More detailed information can be found at the link below:
http://opencores.org/or1k/ordb2a-ep4ce22===========================================================
Connecting ORSoC's OpenRISC-FPGA-development-board
===========================================================1. Connect your ordb2a-board to your computer using the USB connector located on the top-left corner on the board.2. The FPGA is programmed with a pre-compiled OpenRISCprocessor SOC-design, with Ethernet, SDHC, UART and SDRAM support. And with a small boot-loader (orpmon) that is stored in the external SPI-flash. The boot-loader should now be loaded and executing by the OpenRISC processor.3. Open up a new terminal and type:$ picocom --b 115200 --p n --d 8 --f xon /dev/ttyUSB2Press "Enter" and you should now see a print-out in your terminal-window showing: ORSoC devboard>You now have a command-prompt "ORSoC devboard>" controlling the orpmon-software.By typing "help", all the diffent commands will be listed. For example you can start a coremark-test (cpu benchmark test), by typing "coremark 30"===============================================================
Program ORSoC's OpenRISC-FPGA-development-board and run Linux
===============================================================1. Connect your ordb2a-board to your computer using the USB connector located on the top-left corner on the board.2. Start a terminal and type:$ cd ~/fpga_dev_board/ordb2a-ep4ce22$ jtag ./program_fpga.jtagThe file "program_fpga.jtag" defines what FPGA programming file that should be used.3. The FPGA is now programmed with a pre-compiled OpenRISCprocessor SOC-design, with the OpenRISC processor, Ethernet, SDHC, UART and SDRAM support. An small boot-loader is stored in the SPI-flash and should now be loaded and executed by the OpenRISC processor.4. Let's now try and download Linux to the SDRAM and then boot iton the OpenRISC SoC design. There are many ways that we can boot Linux, we can use GDB, we can use orpmon and download it using TFTP, or we can program the SPI-flash. We will using GDBin demo. Open up a new terminal tab (shift+ctrl+t) and type:$ /opt/or_debug_proxy/bin/or_debug_proxy -r 55555This starts a program (or_debug_proxy) that controls the USB connection and communication between the GDB debugger and the OpenRISC processor.You should see the follwoing print-out:"Connecting to OR1k via USB debug cableInitialising USB JTAG interfaceJTAG ID = a188a928Stalling OR1K CPU0Read      npc = 0001727c ppc = 00017278 r1 = 00031774Waiting for gdb connection on localhost:55555Press CTRL+c to exit."5. Open up a new terminal tab (shift+ctrl+t) and type:$ picocom --b 115200 --p n --d 8 --f xon /dev/ttyUSB2This UART connection will be our Linux-terminal when we boot-up Linux on the OpenRISC SoC-design.6. Open up a new terminal tab (shift+ctrl+t) and type:$ cd ~/soc-design/linux$ make ARCH=openrisc defconfig$ make ARCH=openrisc$ or32-elf-gdbThe GDB-debugger is now started and you need to connect it tothe or_debug_proxy program, by typing:(gdb) target remote :55555GDB is now connected to the OpenRISC processor and are now waiting. Lets now download the Linux-image, by typing:(gdb) file ./vmlinuxAnswer "y" on the questions.(gdb) loadThe actual download of the Linux image is now in progress and this takes some time, since the JTAG interface is not the fastest one. The following load information should appear:"Loading section .text, size 0x22bd34 lma 0x0Loading section .rodata, size 0x49860 lma 0x22c000Loading section __param, size 0x1c0 lma 0x275860Loading section .data, size 0x15760 lma 0x276000Loading section __ex_table, size 0xa50 lma 0x28b760Loading section .head.text, size 0x4000 lma 0x28e000Loading section .init.text, size 0x12348 lma 0x292000Loading section .init.data, size 0x155e54 lma 0x2a4360Start address 0xc0000000, load size 4160160Transfer rate: 86 KB/sec, 4015 bytes/write."Now we want to set the program-counter to start executing from address 0x100, by typing:(gdb) spr npc 0x100Now let's boot up Linux on the FPGA development board, by typing:(gdb) cYou should now see Linux booting in the picocom-terminal-window that was opened earlier. And you should get a prompt where you can play around with the Linux port that is running on the OpenRISC processor system.For example, you can plug in your board into your Ethernet network and get an IP address by typing:# ifup eth0Your network should now provide your board with an IP address (DHCP) and you can test your connection by pinging a known IP address.====================================================================
Program ORSoC's OpenRISC-FPGA-development-board with bare-metal SW
====================================================================1. Connect your ordb2a-board to your computer using the USB connector located on the top-left corner on the board.2. Start a terminal and type:$ cd /home/openrisc$ jtag ./program_fpga.jtagThe file "program_fpga.jtag" defines what FPGA programming file that should be used.3. The FPGA is now programmed with a pre-compiled OpenRISCprocessor SOC-design, with Ethernet, SDHC, UART and SDRAM support. An small boot-loader is stored in the SPI-flash and should now be loaded and executed by the OpenRISC processor.4. Let's now try and download a bare-metal application (hello world) to the board and run it. Open up a new terminal and type:$ /opt/or_debug_proxy/bin/or_debug_proxy -r 55555This starts a program (or_debug_proxy) that controls the USB connection and communication between the GDB debugger and the OpenRISC processor.You should see the following print-out:"Connecting to OR1k via USB debug cableInitialising USB JTAG interfaceJTAG ID = a188a928Stalling OR1K CPU0Read      npc = 0001727c ppc = 00017278 r1 = 00031774Waiting for gdb connection on localhost:55555Press CTRL+c to exit."5. Open up a new terminal and type:$ picocom --b 115200 --p n --d 8 --f xon /dev/ttyUSB2This UART connection will be a UART-terminal and will receive the Helloworld application's printf text.6. Open up a new terminal and type:$ cd ~/soc-design/helloworld-or1ksim$ or32-elf-gdbThe GDB debugger is now started and you need to connect it tothe or_debug_proxy program, by typing:(gdb) target remote :55555GDB is now connected to the OpenRISC processor and are now waiting. Lets now download the Linux-image, by typing:(gdb) file ./helloworld_hwAnswer "y" on the questions.(gdb) loadThe actual download of the Helloworld-image is now in progress and this takes some time, since the JTAG interface is not the fastest one. The following load-information should appear:"Loading section .vectors, size 0x2000 lma 0x0Loading section .init, size 0x28 lma 0x2000Loading section .text, size 0x494c lma 0x2028Loading section .fini, size 0x1c lma 0x6974Loading section .rodata, size 0x50 lma 0x6990Loading section .eh_frame, size 0x4 lma 0x69e0Loading section .ctors, size 0x8 lma 0x89e4Loading section .dtors, size 0x8 lma 0x89ecLoading section .jcr, size 0x4 lma 0x89f4Loading section .data, size 0x9b8 lma 0x89f8Start address 0x2028, load size 29616Transfer rate: 42 KB/sec, 1851 bytes/write."Now we want to set the program-counter to start executing from address 0x100, by typing:(gdb) spr npc 0x100Now lets start the Helloworld_hw application on the FPGA development board, by typing:(gdb) cYou should now see the follwoing printout in the picocom terminal window that was opened earlier:"Hello world!!!!"Now you can start developing your own bare-metal applications :-)===========================================================
Programming external SPI-flash 
===========================================================
The external SPI flash contains both the FPGA programming file 
and a bootloader (orpmon).
Below are information on how to program the SPI with these two files:1. Download an FPGA-programming file that just connects the FTDI JTAG signals to the SPI flash IOs.$ cd ~/program-spi-flash$ jtag ./program_spi.jtag2. Erase the SPI flash before programming it:$ ./spiflash/spiflash-program -e3. Program the SPI flash with an FPGA programming file (rbf-format):$ ./spiflash/spiflash-program -p /home/openrisc/fpga_dev_board/ordb2a-ep4ce22/output_file.rbf4. Program the SPI-flash with OpenRISC SW application (select only one):4a. Program OpenRISC Linux (requires a large SPI flash):$ ./spiflash/spiflash-program -a 0xc0000 -P /home/openrisc/program-spi-flash/vmlinux.sizebin4b. Program OpenRISC bootloader (orpmon)$ ./spiflash/spiflash-program -a 0xc0000 -P /home/openrisc/program-spi-flash/orpmon.or32.sizebinUnplug the board and connect it again to load the new flash contents.Steps 2-4 can also be combined like so (directory paths omitted for brevity):spiflash-program -e -p output_file.rbf -a 0xc0000 -P orpmon.or32.sizebinSizebin files are produced from binary memory dumps using bin2binsizeword:~/soc-design/orpsocv2/sw/utils/bin2binsizeword ~/soc-design/orpmon/orpmon.or32.bin ~/program-spi-flash/orpmon.or32.sizebinGood luck and welcome to the OpenCores OpenRISC community ;-)Delivered by: Marcus.Erlandsson@orsoc.se, Yann.Vernier@orsoc.se
2011-12-15


 

附:bootloader启动

即ORmon的启动:

烧完RTL综合后的逻辑,内部mem初始化文件就是ORmon。用超级终端(windows)或者picocom(ubuntu)都可以,如下图:

 

 附:也可以用单独linux for openrisc

http://git.openrisc.net/cgit.cgi/jonas/linux/refs/tags

 

 

这篇关于OpenRisc-4-ORSoC跑linux实验的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/157577

相关文章

Linux镜像文件制作方式

《Linux镜像文件制作方式》本文介绍了Linux镜像文件制作的过程,包括确定磁盘空间布局、制作空白镜像文件、分区与格式化、复制引导分区和其他分区... 目录1.确定磁盘空间布局2.制作空白镜像文件3.分区与格式化1) 分区2) 格式化4.复制引导分区5.复制其它分区1) 挂载2) 复制bootfs分区3)

Linux服务器数据盘移除并重新挂载的全过程

《Linux服务器数据盘移除并重新挂载的全过程》:本文主要介绍在Linux服务器上移除并重新挂载数据盘的整个过程,分为三大步:卸载文件系统、分离磁盘和重新挂载,每一步都有详细的步骤和注意事项,确保... 目录引言第一步:卸载文件系统第二步:分离磁盘第三步:重新挂载引言在 linux 服务器上移除并重新挂p

Linux下屏幕亮度的调节方式

《Linux下屏幕亮度的调节方式》文章介绍了Linux下屏幕亮度调节的几种方法,包括图形界面、手动调节(使用ACPI内核模块)和外接显示屏调节,以及自动调节软件(CaliseRedshift和Reds... 目录1 概述2 手动调节http://www.chinasem.cn2.1 手动屏幕调节2.2 外接显

Linux(centos7)虚拟机没有IP问题及解决方案

《Linux(centos7)虚拟机没有IP问题及解决方案》文章介绍了在CentOS7中配置虚拟机网络并使用Xshell连接虚拟机的步骤,首先,检查并配置网卡ens33的ONBOOT属性为yes,然后... 目录输入查看ZFhrxIP命令:ip addr查看,没有虚拟机IP修改ens33配置文件重启网络Xh

linux实现对.jar文件的配置文件进行修改

《linux实现对.jar文件的配置文件进行修改》文章讲述了如何使用Linux系统修改.jar文件的配置文件,包括进入文件夹、编辑文件、保存并退出编辑器,以及重新启动项目... 目录linux对.jar文件的配置文件进行修改第一步第二步 第三步第四步总结linux对.jar文件的配置文件进行修改第一步进

linux ssh如何实现增加访问端口

《linuxssh如何实现增加访问端口》Linux中SSH默认使用22端口,为了增强安全性或满足特定需求,可以通过修改SSH配置来增加或更改SSH访问端口,具体步骤包括修改SSH配置文件、增加或修改... 目录1. 修改 SSH 配置文件2. 增加或修改端口3. 保存并退出编辑器4. 更新防火墙规则使用uf

Linux join命令的使用及说明

《Linuxjoin命令的使用及说明》`join`命令用于在Linux中按字段将两个文件进行连接,类似于SQL的JOIN,它需要两个文件按用于匹配的字段排序,并且第一个文件的换行符必须是LF,`jo... 目录一. 基本语法二. 数据准备三. 指定文件的连接key四.-a输出指定文件的所有行五.-o指定输出

Linux jq命令的使用解读

《Linuxjq命令的使用解读》jq是一个强大的命令行工具,用于处理JSON数据,它可以用来查看、过滤、修改、格式化JSON数据,通过使用各种选项和过滤器,可以实现复杂的JSON处理任务... 目录一. 简介二. 选项2.1.2.2-c2.3-r2.4-R三. 字段提取3.1 普通字段3.2 数组字段四.

Linux kill正在执行的后台任务 kill进程组使用详解

《Linuxkill正在执行的后台任务kill进程组使用详解》文章介绍了两个脚本的功能和区别,以及执行这些脚本时遇到的进程管理问题,通过查看进程树、使用`kill`命令和`lsof`命令,分析了子... 目录零. 用到的命令一. 待执行的脚本二. 执行含子进程的脚本,并kill2.1 进程查看2.2 遇到的

Linux云服务器手动配置DNS的方法步骤

《Linux云服务器手动配置DNS的方法步骤》在Linux云服务器上手动配置DNS(域名系统)是确保服务器能够正常解析域名的重要步骤,以下是详细的配置方法,包括系统文件的修改和常见问题的解决方案,需要... 目录1. 为什么需要手动配置 DNS?2. 手动配置 DNS 的方法方法 1:修改 /etc/res