DecisionTreeClassifier重要参数、属性、接口(实现一棵树,随机性参数)

本文主要是介绍DecisionTreeClassifier重要参数、属性、接口(实现一棵树,随机性参数),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 

DecisionTreeClassifier重要参数

1.criterion

要将表格转化成一颗树,决策树需要找出最佳节点和最佳的分枝方法,对分类树来说,衡量这个“最佳”指标“叫做不纯度

criterion这个参数正是用来决定不纯度的计算方法。sklearn提供了两种选择:
1)输入”entropy“,使用信息熵
2)输入”gini“,使用基尼系数
决策树的基本流程:
直到没有更多的特征可用,或整体的不纯度已经最优,决策树就会停止生长。
建立一颗树
#######实现一棵树,随机性参数,导入需要用到的模块库
from sklearn import tree
from sklearn.datasets import load_wine  # 自带的各种数据
from sklearn.model_selection import train_test_split
# 2.观察数据的形式
wine = load_wine()   # 数据实例化 
# 特征列
wine.data
wine.data.shape  # 查看结构# 标签列
wine.target
import pandas as pd
pd.concat([pd.DataFrame(wine.data),pd.DataFrame(wine.target)],axis=1)  # 将两部分变成一个表
# 3.分训练集和测试集
Xtrain,Xtest,Ytrain,Ytest = train_test_split(wine.data,wine.target,test_size = 0.3) # 百分之三十做测试集,百分之七十做训练集
# 4.建立模型
clf = tree.DecisionTreeClassifier(criterion = 'entropy')  # 实例化参数
clf = clf.fit(Xtrain,Ytrain)   # 用训练集数据做训练模型
score = clf.score(Xtest,Ytest)  # 导入测试集,返回预测准确度accuracy
score #  查看预测准确度############5.画一颗树
import graphviz
feature_name = ['酒精','苹果酸','灰','灰的碱性','镁','总酚','类黄酮','非黄烷类酚类','花青素','颜色强度','色调','od280/od315稀释葡萄酒','脯氨酸']
# 定义决策树要画的树
dot_data = tree.export_graphviz(clf,feature_names = feature_name,class_names = ['琴酒','雪莉','贝尔摩德'],filled = True,rounded = True)
graph = graphviz.Source(dot_data)
graph
# 6.探索决策树
# 特征重要性
clf.feature_importances_[*zip(feature_name,clf.feature_importances_)]  # 将定义的特征名与特征值连起来观察

第5步已经生成一棵决策树

2、random_state & splitter

# random_state & splitter
clf = tree.DecisionTreeClassifier(criterion="entropy",random_state=30    # 用来设置分枝中的随机模式的参数
#                                   ,splitter="random"  # 用控制决策树中的随机选项,如果加上之后准确率反而降低,可以注掉)
clf = clf.fit(Xtrain, Ytrain)
score = clf.score(Xtest, Ytest)
score

可以得到准确度,然后画出一棵树

import graphviz
dot_data = tree.export_graphviz(clf,feature_names= feature_name,class_names=["琴酒","雪莉","贝尔摩德"],filled=True,rounded=True)  
graph = graphviz.Source(dot_data)
graph

此时画出的时,随机性更高,根据对random_state参数的设置,也可以解决每次画出的树都不是同一棵树的问题了。

3、剪枝参数

在不加限制的情况下,一棵决策树会生长到衡量不纯度的指标最优,或者没有更多的特征可用为止。这样的决策树
往往会过拟合,这就是说, 它会在训练集上表现很好,在测试集上却表现糟糕。 我们收集的样本数据不可能和整体
的状况完全一致,因此当一棵决策树对训练数据有了过于优秀的解释性,它找出的规则必然包含了训练样本中的噪
声,并使它对未知数据的拟合程度不足。
#我们的树对训练集的拟合程度如何?
score_train = clf.score(Xtrain, Ytrain)
score_train
max_depth
限制树的最大深度,超过设定深度的树枝全部剪掉
min_samples_leaf &min_samples_split
min_samples_leaf 限定,一个节点在分枝后的每个子节点都必须包含至少 min_samples_leaf 个训练样本,否则分
枝就不会发生,或者,分枝会朝着满足每个子节点都包含 min_samples_leaf 个样本的方向去发生
min_samples_split 限定,一个节点必须要包含至少 min_samples_split 个训练样本,这个节点才允许被分枝,否则
分枝就不会发生。
max_features & min_impurity_decrease
一般 max_depth 使用,用作树的 精修
如何确定最优的剪枝参数?
# 观察一个最优的剪枝参数
import matplotlib.pyplot as plt
test = []
for i in range(10):
    clf = tree.DecisionTreeClassifier(criterion="entropy"
                                  ,random_state=30 # 输入任意一个整数,都会让树稳定下来
                                  ,splitter="random"
                                  ,max_depth=3
#                                  ,min_samples_leaf=10 # 用来显示分支之后的叶子节点的最少个数,如果加上之后精度降低,则注掉
                                  ,min_samples_split=10 # 一个节点至少含有的节点个数,才允许被分支,如果加上之后精度降低,则注掉
                                 )
    clf = clf.fit(Xtrain,Ytrain)
    score = clf.score(Xtest,Ytest)
    test.append(score)
plt.plot(range(1,11),test,color='red',label ='max_depth')
plt.legend()
plt.show()
## 既达到测试集的拟合程度最高,又达到了节省计算空间
4、目标权重参数
class_weight & min_weight_fraction_leaf
完成样本标签平衡的参数。 使用 class_weight 参数对样本标签进行一定的均衡,给 少量的标签更多的权重,让模型更偏向少数类,向捕获少数类的方向建模。该参数默认 None ,此模式表示自动给与数据集中的所有标签相同的权重。 有了权重之后,样本量就不再是单纯地记录数目,而是受输入的权重影响了,因此这时候剪枝,就需要搭配 min_ weight_fraction_leaf 这个基于权重的剪枝参数来使用。
重要接口:
决策树最常用的接口包括 fit、score、apply、predict
#  apply 用来返回每个测试样本所在的叶子节点的索引
clf.apply(Xtest)
# predict 用来返回每个测试样本的分类/回归结果
clf.predict(Xtest)
所有接口中要求输入 X_train X_test 的部分,输入的特征矩阵必须至少是一个二维矩阵。 sklearn 不接受任何一维矩阵作为特征矩阵被输入。 如果你的数据的确只有一个特征,那必须用 reshape(-1,1) 来给 矩阵增维;如果你的数据只有一个特征和一个样本,使用reshape(1,-1) 来给你的数据增维。
属性:
属性是在模型训练之后,能够调用查看的模型的各种性质。对决策树来说,最重要的是 feature_importances_ ,能
够查看各个特征对模型的重要性。
(根据菜菜的机器学习整理)

这篇关于DecisionTreeClassifier重要参数、属性、接口(实现一棵树,随机性参数)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/155931

相关文章

pytorch自动求梯度autograd的实现

《pytorch自动求梯度autograd的实现》autograd是一个自动微分引擎,它可以自动计算张量的梯度,本文主要介绍了pytorch自动求梯度autograd的实现,具有一定的参考价值,感兴趣... autograd是pytorch构建神经网络的核心。在 PyTorch 中,结合以下代码例子,当你

SpringBoot集成Milvus实现数据增删改查功能

《SpringBoot集成Milvus实现数据增删改查功能》milvus支持的语言比较多,支持python,Java,Go,node等开发语言,本文主要介绍如何使用Java语言,采用springboo... 目录1、Milvus基本概念2、添加maven依赖3、配置yml文件4、创建MilvusClient

JS+HTML实现在线图片水印添加工具

《JS+HTML实现在线图片水印添加工具》在社交媒体和内容创作日益频繁的今天,如何保护原创内容、展示品牌身份成了一个不得不面对的问题,本文将实现一个完全基于HTML+CSS构建的现代化图片水印在线工具... 目录概述功能亮点使用方法技术解析延伸思考运行效果项目源码下载总结概述在社交媒体和内容创作日益频繁的

SpringMVC获取请求参数的方法

《SpringMVC获取请求参数的方法》:本文主要介绍SpringMVC获取请求参数的方法,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下... 目录1、通过ServletAPI获取2、通过控制器方法的形参获取请求参数3、@RequestParam4、@

openCV中KNN算法的实现

《openCV中KNN算法的实现》KNN算法是一种简单且常用的分类算法,本文主要介绍了openCV中KNN算法的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录KNN算法流程使用OpenCV实现KNNOpenCV 是一个开源的跨平台计算机视觉库,它提供了各

OpenCV图像形态学的实现

《OpenCV图像形态学的实现》本文主要介绍了OpenCV图像形态学的实现,包括腐蚀、膨胀、开运算、闭运算、梯度运算、顶帽运算和黑帽运算,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起... 目录一、图像形态学简介二、腐蚀(Erosion)1. 原理2. OpenCV 实现三、膨胀China编程(

通过Spring层面进行事务回滚的实现

《通过Spring层面进行事务回滚的实现》本文主要介绍了通过Spring层面进行事务回滚的实现,包括声明式事务和编程式事务,具有一定的参考价值,感兴趣的可以了解一下... 目录声明式事务回滚:1. 基础注解配置2. 指定回滚异常类型3. ​不回滚特殊场景编程式事务回滚:1. ​使用 TransactionT

Android实现打开本地pdf文件的两种方式

《Android实现打开本地pdf文件的两种方式》在现代应用中,PDF格式因其跨平台、稳定性好、展示内容一致等特点,在Android平台上,如何高效地打开本地PDF文件,不仅关系到用户体验,也直接影响... 目录一、项目概述二、相关知识2.1 PDF文件基本概述2.2 android 文件访问与存储权限2.

使用Python实现全能手机虚拟键盘的示例代码

《使用Python实现全能手机虚拟键盘的示例代码》在数字化办公时代,你是否遇到过这样的场景:会议室投影电脑突然键盘失灵、躺在沙发上想远程控制书房电脑、或者需要给长辈远程协助操作?今天我要分享的Pyth... 目录一、项目概述:不止于键盘的远程控制方案1.1 创新价值1.2 技术栈全景二、需求实现步骤一、需求

Spring Shell 命令行实现交互式Shell应用开发

《SpringShell命令行实现交互式Shell应用开发》本文主要介绍了SpringShell命令行实现交互式Shell应用开发,能够帮助开发者快速构建功能丰富的命令行应用程序,具有一定的参考价... 目录引言一、Spring Shell概述二、创建命令类三、命令参数处理四、命令分组与帮助系统五、自定义S