DecisionTreeClassifier重要参数、属性、接口(实现一棵树,随机性参数)

本文主要是介绍DecisionTreeClassifier重要参数、属性、接口(实现一棵树,随机性参数),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 

DecisionTreeClassifier重要参数

1.criterion

要将表格转化成一颗树,决策树需要找出最佳节点和最佳的分枝方法,对分类树来说,衡量这个“最佳”指标“叫做不纯度

criterion这个参数正是用来决定不纯度的计算方法。sklearn提供了两种选择:
1)输入”entropy“,使用信息熵
2)输入”gini“,使用基尼系数
决策树的基本流程:
直到没有更多的特征可用,或整体的不纯度已经最优,决策树就会停止生长。
建立一颗树
#######实现一棵树,随机性参数,导入需要用到的模块库
from sklearn import tree
from sklearn.datasets import load_wine  # 自带的各种数据
from sklearn.model_selection import train_test_split
# 2.观察数据的形式
wine = load_wine()   # 数据实例化 
# 特征列
wine.data
wine.data.shape  # 查看结构# 标签列
wine.target
import pandas as pd
pd.concat([pd.DataFrame(wine.data),pd.DataFrame(wine.target)],axis=1)  # 将两部分变成一个表
# 3.分训练集和测试集
Xtrain,Xtest,Ytrain,Ytest = train_test_split(wine.data,wine.target,test_size = 0.3) # 百分之三十做测试集,百分之七十做训练集
# 4.建立模型
clf = tree.DecisionTreeClassifier(criterion = 'entropy')  # 实例化参数
clf = clf.fit(Xtrain,Ytrain)   # 用训练集数据做训练模型
score = clf.score(Xtest,Ytest)  # 导入测试集,返回预测准确度accuracy
score #  查看预测准确度############5.画一颗树
import graphviz
feature_name = ['酒精','苹果酸','灰','灰的碱性','镁','总酚','类黄酮','非黄烷类酚类','花青素','颜色强度','色调','od280/od315稀释葡萄酒','脯氨酸']
# 定义决策树要画的树
dot_data = tree.export_graphviz(clf,feature_names = feature_name,class_names = ['琴酒','雪莉','贝尔摩德'],filled = True,rounded = True)
graph = graphviz.Source(dot_data)
graph
# 6.探索决策树
# 特征重要性
clf.feature_importances_[*zip(feature_name,clf.feature_importances_)]  # 将定义的特征名与特征值连起来观察

第5步已经生成一棵决策树

2、random_state & splitter

# random_state & splitter
clf = tree.DecisionTreeClassifier(criterion="entropy",random_state=30    # 用来设置分枝中的随机模式的参数
#                                   ,splitter="random"  # 用控制决策树中的随机选项,如果加上之后准确率反而降低,可以注掉)
clf = clf.fit(Xtrain, Ytrain)
score = clf.score(Xtest, Ytest)
score

可以得到准确度,然后画出一棵树

import graphviz
dot_data = tree.export_graphviz(clf,feature_names= feature_name,class_names=["琴酒","雪莉","贝尔摩德"],filled=True,rounded=True)  
graph = graphviz.Source(dot_data)
graph

此时画出的时,随机性更高,根据对random_state参数的设置,也可以解决每次画出的树都不是同一棵树的问题了。

3、剪枝参数

在不加限制的情况下,一棵决策树会生长到衡量不纯度的指标最优,或者没有更多的特征可用为止。这样的决策树
往往会过拟合,这就是说, 它会在训练集上表现很好,在测试集上却表现糟糕。 我们收集的样本数据不可能和整体
的状况完全一致,因此当一棵决策树对训练数据有了过于优秀的解释性,它找出的规则必然包含了训练样本中的噪
声,并使它对未知数据的拟合程度不足。
#我们的树对训练集的拟合程度如何?
score_train = clf.score(Xtrain, Ytrain)
score_train
max_depth
限制树的最大深度,超过设定深度的树枝全部剪掉
min_samples_leaf &min_samples_split
min_samples_leaf 限定,一个节点在分枝后的每个子节点都必须包含至少 min_samples_leaf 个训练样本,否则分
枝就不会发生,或者,分枝会朝着满足每个子节点都包含 min_samples_leaf 个样本的方向去发生
min_samples_split 限定,一个节点必须要包含至少 min_samples_split 个训练样本,这个节点才允许被分枝,否则
分枝就不会发生。
max_features & min_impurity_decrease
一般 max_depth 使用,用作树的 精修
如何确定最优的剪枝参数?
# 观察一个最优的剪枝参数
import matplotlib.pyplot as plt
test = []
for i in range(10):
    clf = tree.DecisionTreeClassifier(criterion="entropy"
                                  ,random_state=30 # 输入任意一个整数,都会让树稳定下来
                                  ,splitter="random"
                                  ,max_depth=3
#                                  ,min_samples_leaf=10 # 用来显示分支之后的叶子节点的最少个数,如果加上之后精度降低,则注掉
                                  ,min_samples_split=10 # 一个节点至少含有的节点个数,才允许被分支,如果加上之后精度降低,则注掉
                                 )
    clf = clf.fit(Xtrain,Ytrain)
    score = clf.score(Xtest,Ytest)
    test.append(score)
plt.plot(range(1,11),test,color='red',label ='max_depth')
plt.legend()
plt.show()
## 既达到测试集的拟合程度最高,又达到了节省计算空间
4、目标权重参数
class_weight & min_weight_fraction_leaf
完成样本标签平衡的参数。 使用 class_weight 参数对样本标签进行一定的均衡,给 少量的标签更多的权重,让模型更偏向少数类,向捕获少数类的方向建模。该参数默认 None ,此模式表示自动给与数据集中的所有标签相同的权重。 有了权重之后,样本量就不再是单纯地记录数目,而是受输入的权重影响了,因此这时候剪枝,就需要搭配 min_ weight_fraction_leaf 这个基于权重的剪枝参数来使用。
重要接口:
决策树最常用的接口包括 fit、score、apply、predict
#  apply 用来返回每个测试样本所在的叶子节点的索引
clf.apply(Xtest)
# predict 用来返回每个测试样本的分类/回归结果
clf.predict(Xtest)
所有接口中要求输入 X_train X_test 的部分,输入的特征矩阵必须至少是一个二维矩阵。 sklearn 不接受任何一维矩阵作为特征矩阵被输入。 如果你的数据的确只有一个特征,那必须用 reshape(-1,1) 来给 矩阵增维;如果你的数据只有一个特征和一个样本,使用reshape(1,-1) 来给你的数据增维。
属性:
属性是在模型训练之后,能够调用查看的模型的各种性质。对决策树来说,最重要的是 feature_importances_ ,能
够查看各个特征对模型的重要性。
(根据菜菜的机器学习整理)

这篇关于DecisionTreeClassifier重要参数、属性、接口(实现一棵树,随机性参数)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/155931

相关文章

Nginx实现高并发的项目实践

《Nginx实现高并发的项目实践》本文主要介绍了Nginx实现高并发的项目实践,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录使用最新稳定版本的Nginx合理配置工作进程(workers)配置工作进程连接数(worker_co

python中列表list切分的实现

《python中列表list切分的实现》列表是Python中最常用的数据结构之一,经常需要对列表进行切分操作,本文主要介绍了python中列表list切分的实现,文中通过示例代码介绍的非常详细,对大家... 目录一、列表切片的基本用法1.1 基本切片操作1.2 切片的负索引1.3 切片的省略二、列表切分的高

基于Python实现一个PDF特殊字体提取工具

《基于Python实现一个PDF特殊字体提取工具》在PDF文档处理场景中,我们常常需要针对特定格式的文本内容进行提取分析,本文介绍的PDF特殊字体提取器是一款基于Python开发的桌面应用程序感兴趣的... 目录一、应用背景与功能概述二、技术架构与核心组件2.1 技术选型2.2 系统架构三、核心功能实现解析

使用Python实现表格字段智能去重

《使用Python实现表格字段智能去重》在数据分析和处理过程中,数据清洗是一个至关重要的步骤,其中字段去重是一个常见且关键的任务,下面我们看看如何使用Python进行表格字段智能去重吧... 目录一、引言二、数据重复问题的常见场景与影响三、python在数据清洗中的优势四、基于Python的表格字段智能去重

Spring AI集成DeepSeek实现流式输出的操作方法

《SpringAI集成DeepSeek实现流式输出的操作方法》本文介绍了如何在SpringBoot中使用Sse(Server-SentEvents)技术实现流式输出,后端使用SpringMVC中的S... 目录一、后端代码二、前端代码三、运行项目小天有话说题外话参考资料前面一篇文章我们实现了《Spring

Nginx中location实现多条件匹配的方法详解

《Nginx中location实现多条件匹配的方法详解》在Nginx中,location指令用于匹配请求的URI,虽然location本身是基于单一匹配规则的,但可以通过多种方式实现多个条件的匹配逻辑... 目录1. 概述2. 实现多条件匹配的方式2.1 使用多个 location 块2.2 使用正则表达式

使用Apache POI在Java中实现Excel单元格的合并

《使用ApachePOI在Java中实现Excel单元格的合并》在日常工作中,Excel是一个不可或缺的工具,尤其是在处理大量数据时,本文将介绍如何使用ApachePOI库在Java中实现Excel... 目录工具类介绍工具类代码调用示例依赖配置总结在日常工作中,Excel 是一个不可或缺的工http://

Java8需要知道的4个函数式接口简单教程

《Java8需要知道的4个函数式接口简单教程》:本文主要介绍Java8中引入的函数式接口,包括Consumer、Supplier、Predicate和Function,以及它们的用法和特点,文中... 目录什么是函数是接口?Consumer接口定义核心特点注意事项常见用法1.基本用法2.结合andThen链

SpringBoot实现导出复杂对象到Excel文件

《SpringBoot实现导出复杂对象到Excel文件》这篇文章主要为大家详细介绍了如何使用Hutool和EasyExcel两种方式来实现在SpringBoot项目中导出复杂对象到Excel文件,需要... 在Spring Boot项目中导出复杂对象到Excel文件,可以利用Hutool或EasyExcel

Python如何实现读取csv文件时忽略文件的编码格式

《Python如何实现读取csv文件时忽略文件的编码格式》我们再日常读取csv文件的时候经常会发现csv文件的格式有多种,所以这篇文章为大家介绍了Python如何实现读取csv文件时忽略文件的编码格式... 目录1、背景介绍2、库的安装3、核心代码4、完整代码1、背景介绍我们再日常读取csv文件的时候经常