抄写Linux源码(Day16:内存管理)

2023-10-06 17:15

本文主要是介绍抄写Linux源码(Day16:内存管理),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

回忆我们需要做的事情:
为了支持 shell 程序的执行,我们需要提供:
1.缺页中断(不理解为什么要这个东西,只是闪客说需要,后边再说)
2.硬盘驱动、文件系统 (shell程序一开始是存放在磁盘里的,所以需要这两个东西)
3.fork,execve, wait 这三个系统调用,也可以说是 进程调度 (否则无法 halt shell 程序并且启动另外的程序)
4.键盘驱动、VGA/console/uart 驱动、中断处理 (支持键盘输入和屏幕显示)
5.内存管理 (shell 启动其它进程时,不能共用内存,而是切换其它进程的页表)
6.为了写代码方便,我们需要从 MBR 进入到 main 函数,这也是从 汇编 切换到 C 语言 — 已经完成
7.应用程序申请内存的接口

现在已经进入 main 函数了,那么,进入 main 函数后我们要怎么实现上面提到的,还没完成的 6 个要求呢?我们要实现它们才能启动 shell、

用户空间需要有内存管理机制。同样的,内核空间的内存也需要管理,比如我们需要给磁盘分配高速缓存,为了方便管理内核空间内存,我们会去实现如 kfree 和 kalloc 之类的内核函数。

继续看闪客文章第12回

https://mp.weixin.qq.com/s?__biz=Mzk0MjE3NDE0Ng==&mid=2247500061&idx=1&sn=6cb3382d7ac35ebeac52bbba3a89db4e&chksm=c2c5bbb0f5b232a6e1b2c7b1f55a7b7057d29ea11348068e122a03b75db220ffe19ea1e8fc24&scene=178&cur_album_id=2123743679373688834#rd

书接上回,上回书咱们回顾了一下 main.c 函数之前我们做的全部工作,给进入 main 函数做了一个充分的准备。

在这里插入图片描述
那今天我们就话不多说,从 main 函数的第一行代码开始读。

还是把 main 的全部代码都先写出来,很少。

void main(void) {ROOT_DEV = ORIG_ROOT_DEV;drive_info = DRIVE_INFO;memory_end = (1<<20) + (EXT_MEM_K<<10);memory_end &= 0xfffff000;if (memory_end > 16*1024*1024)memory_end = 16*1024*1024;if (memory_end > 12*1024*1024) buffer_memory_end = 4*1024*1024;else if (memory_end > 6*1024*1024)buffer_memory_end = 2*1024*1024;elsebuffer_memory_end = 1*1024*1024;main_memory_start = buffer_memory_end;mem_init(main_memory_start,memory_end);trap_init();blk_dev_init();chr_dev_init();tty_init();time_init();sched_init();buffer_init(buffer_memory_end);hd_init();floppy_init();sti();move_to_user_mode();if (!fork()) {      /* we count on this going ok */init();}for(;;) pause();
}

我们今天就看这第一小段。

首先,ROOT_DEV 为系统的根文件设备号,DRIVE_INFO 为之前 setup.s 程序获取并存储在内存 0x90000 处的设备信息,我们先不管这俩,等之后用到了再说。

我们看后面这一坨很影响整体画风的一段代码。

void main(void) {...memory_end = (1<<20) + (EXT_MEM_K<<10);memory_end &= 0xfffff000;if (memory_end > 16*1024*1024)memory_end = 16*1024*1024;if (memory_end > 12*1024*1024) buffer_memory_end = 4*1024*1024;else if (memory_end > 6*1024*1024)buffer_memory_end = 2*1024*1024;elsebuffer_memory_end = 1*1024*1024;main_memory_start = buffer_memory_end;...
}

这一坨代码和后面规规整整的 xxx_init 平级的位置,要是我们这么写代码,肯定被老板批评,被同事鄙视了。但 Linus 写的,就是经典,学就完事了。

这一坨代码虽然很乱,但仔细看就知道它只是为了计算出三个变量罢了。

main_memory_start
memory_end
buffer_memory_end

而观察最后一行代码发现,其实两个变量是相等的,所以其实仅仅计算出了两个变量。

main_memory_start
memory_end

然后再具体分析这个逻辑,其实就是一堆 if else 判断而已,判断的标准都是 memory_end 也就是内存最大值的大小,而这个内存最大值由第一行代码可以看出,是等于 1M + 扩展内存大小。(即,内存最小得有 1M)

那 ok 了,其实就只是针对不同的内存大小,设置不同的边界值罢了,为了理解它,我们完全没必要考虑这么周全,就假设总内存一共就 8M 大小吧。

那么如果内存为 8M 大小,memory_end 就是

8 * 1024 * 1024

也就只会走倒数第二个分支,那么 buffer_memory_end 就为

2 * 1024 * 1024

那么 main_memory_start 也为

2 * 1024 * 1024

那这些值有什么用呢?一张图就给你说明白了。

在这里插入图片描述
(我们之前把 system 放在 0x0,把栈指针放在 0x9FF00,所以可以认为,内核程序占用内存为 1M)
你看,其实就是定了三个箭头所指向的地址的三个边界变量,具体主内存区是如何管理和分配的,要看下面代码的功劳。

void main(void) {...mem_init(main_memory_start, memory_end);...
}

而缓冲区是如何管理和分配的,就要看

void main(void) {...buffer_init(buffer_memory_end);...
}

是如何折腾的了。

那我们今天就不背着这两个负担了,仅仅需要知道这三个参数的计算,以及后面是为谁效力的,就好啦,是不是很轻松?后面我们再讲,如何利用这三个参数,来做到内存的管理。

预知后事如何,且听下会分解。

看闪客文章 “操作系统就用一张大表管理内存?”

今天我们不聊具体内存管理的算法,我们就来看看,操作系统用什么样的一张表,达到了管理内存的效果。

我们以 Linux 0.11 源码为例,发现进入内核的 main 函数后不久,有这样一坨代码。

void main(void) {...memory_end = (1<<20) + (EXT_MEM_K<<10);memory_end &= 0xfffff000;if (memory_end > 16*1024*1024)memory_end = 16*1024*1024;if (memory_end > 12*1024*1024) buffer_memory_end = 4*1024*1024;else if (memory_end > 6*1024*1024)buffer_memory_end = 2*1024*1024;elsebuffer_memory_end = 1*1024*1024;main_memory_start = buffer_memory_end;mem_init(main_memory_start,memory_end);...
}

除了最后一行外,前面的那一大坨的作用很简单。

其实就只是针对不同的内存大小,设置不同的边界值罢了,为了理解它,我们完全没必要考虑这么周全,就假设总内存一共就 8M 大小吧。

那么如果内存为 8M 大小,memory_end 就是

8 * 1024 * 1024

也就只会走倒数第二个分支,那么 buffer_memory_end 就为

2 * 1024 * 1024

那么 main_memory_start 也为

2 * 1024 * 1024

你仔细看看代码逻辑,看是不是这样?

当然,你不愿意细想也没关系,上述代码执行后,就是如下效果而已。

在这里插入图片描述

你看,其实就是定了三个箭头所指向的地址的三个边界变量。具体主内存区是如何管理和分配的,要看 mem_init 里做了什么。

void main(void) {...mem_init(main_memory_start, memory_end);...
}

而缓冲区是如何管理和分配的,就要看再后面的 buffer_init 里干了什么。

void main(void) {...buffer_init(buffer_memory_end);...
}

不过我们今天只看,主内存是如何管理的,很简单,放轻松。

进入 mem_init 函数。

#define LOW_MEM 0x100000
#define PAGING_MEMORY (15*1024*1024)
#define PAGING_PAGES (PAGING_MEMORY>>12)
#define MAP_NR(addr) (((addr)-LOW_MEM)>>12)
#define USED 100static long HIGH_MEMORY = 0;
static unsigned char mem_map[PAGING_PAGES] = { 0, };// start_mem = 2 * 1024 * 1024
// end_mem = 8 * 1024 * 1024
void mem_init(long start_mem, long end_mem)
{int i;HIGH_MEMORY = end_mem;for (i=0 ; i<PAGING_PAGES ; i++)mem_map[i] = USED;i = MAP_NR(start_mem);end_mem -= start_mem;end_mem >>= 12;while (end_mem-->0)mem_map[i++]=0;
}

发现也没几行,而且并没有更深的方法调用,看来是个好欺负的方法。

仔细一看这个方法,其实折腾来折腾去,就是给一个 mem_map 数组的各个位置上赋了值,而且显示全部赋值为 USED 也就是 100,然后对其中一部分又赋值为了 0。

赋值为 100 的部分就是 USED,也就表示内存被占用,如果再具体说是占用了 100 次,这个之后再说。剩下赋值为 0 的部分就表示未被使用,也即使用次数为零。

是不是很简单?就是准备了一个表,记录了哪些内存被占用了,哪些内存没被占用。这就是所谓的“管理”,并没有那么神乎其神。

那接下来自然有两个问题,每个元素表示占用和未占用,这个表示的范围是多大?初始化时哪些地方是占用的,哪些地方又是未占用的?

还是一张图就看明白了,我们仍然假设内存总共只有 8M。

在这里插入图片描述
可以看出,初始化完成后,其实就是 mem_map 这个数组的每个元素都代表一个 4K 内存是否空闲(准确说是使用次数)。

4K 内存通常叫做 1 页内存,而这种管理方式叫分页管理,就是把内存分成一页一页(4K)的单位去管理。

1M 以下的内存这个数组干脆没有记录,这里的内存是无需管理的,或者换个说法是无权管理的,也就是没有权利申请和释放,因为这个区域是内核代码所在的地方,不能被“污染”。

1M 到 2M 这个区间是缓冲区,2M 是缓冲区的末端,缓冲区的开始在哪里之后再说,这些地方不是主内存区域,因此直接标记为 USED,产生的效果就是无法再被分配了。

2M 以上的空间是主内存区域,而主内存目前没有任何程序申请,所以初始化时统统都是零,未来等着应用程序去申请和释放这里的内存资源。

那应用程序如何申请内存呢?我们本讲不展开,不过我们简单展望一下,看看申请内存的过程中,是如何使用 mem_map 这个结构的。

在 memory.c 文件中有个函数 get_free_page(),用于在主内存区中申请一页空闲内存页,并返回物理内存页的起始地址。

比如我们在 fork 子进程的时候,会调用 copy_process 函数来复制进程的结构信息,其中有一个步骤就是要申请一页内存,用于存放进程结构信息 task_struct。

int copy_process(...) {struct task_struct *p;...p = (struct task_struct *) get_free_page();...
}

我们看 get_free_page 的具体实现,是内联汇编代码,看不懂不要紧,注意它里面就有 mem_map 结构的使用。

unsigned long get_free_page(void) {register unsigned long __res asm("ax");__asm__("std ; repne ; scasb\n\t""jne 1f\n\t""movb $1,1(%%edi)\n\t""sall $12,%%ecx\n\t""addl %2,%%ecx\n\t""movl %%ecx,%%edx\n\t""movl $1024,%%ecx\n\t""leal 4092(%%edx),%%edi\n\t""rep ; stosl\n\t""movl %%edx,%%eax\n""1:":"=a" (__res):"0" (0),"i" (LOW_MEM),"c" (PAGING_PAGES),"D" (mem_map + PAGING_PAGES-1):"di","cx","dx");return __res;
}

就是选择 mem_map 中首个空闲页面,并标记为已使用。

好了,本讲就这么多,只是填写了一张大表而已,简单吧?之后的内存申请与释放等骚操作,统统是跟着张大表 mem_map 打交道而已,你一定要记住它哦。

看完了闪客文章 “操作系统就用一张大表管理内存?”

TODO:here

这篇关于抄写Linux源码(Day16:内存管理)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/153564

相关文章

NameNode内存生产配置

Hadoop2.x 系列,配置 NameNode 内存 NameNode 内存默认 2000m ,如果服务器内存 4G , NameNode 内存可以配置 3g 。在 hadoop-env.sh 文件中配置如下。 HADOOP_NAMENODE_OPTS=-Xmx3072m Hadoop3.x 系列,配置 Nam

linux-基础知识3

打包和压缩 zip 安装zip软件包 yum -y install zip unzip 压缩打包命令: zip -q -r -d -u 压缩包文件名 目录和文件名列表 -q:不显示命令执行过程-r:递归处理,打包各级子目录和文件-u:把文件增加/替换到压缩包中-d:从压缩包中删除指定的文件 解压:unzip 压缩包名 打包文件 把压缩包从服务器下载到本地 把压缩包上传到服务器(zip

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

JAVA智听未来一站式有声阅读平台听书系统小程序源码

智听未来,一站式有声阅读平台听书系统 🌟&nbsp;开篇:遇见未来,从“智听”开始 在这个快节奏的时代,你是否渴望在忙碌的间隙,找到一片属于自己的宁静角落?是否梦想着能随时随地,沉浸在知识的海洋,或是故事的奇幻世界里?今天,就让我带你一起探索“智听未来”——这一站式有声阅读平台听书系统,它正悄悄改变着我们的阅读方式,让未来触手可及! 📚&nbsp;第一站:海量资源,应有尽有 走进“智听

Linux 网络编程 --- 应用层

一、自定义协议和序列化反序列化 代码: 序列化反序列化实现网络版本计算器 二、HTTP协议 1、谈两个简单的预备知识 https://www.baidu.com/ --- 域名 --- 域名解析 --- IP地址 http的端口号为80端口,https的端口号为443 url为统一资源定位符。CSDNhttps://mp.csdn.net/mp_blog/creation/editor

【Python编程】Linux创建虚拟环境并配置与notebook相连接

1.创建 使用 venv 创建虚拟环境。例如,在当前目录下创建一个名为 myenv 的虚拟环境: python3 -m venv myenv 2.激活 激活虚拟环境使其成为当前终端会话的活动环境。运行: source myenv/bin/activate 3.与notebook连接 在虚拟环境中,使用 pip 安装 Jupyter 和 ipykernel: pip instal

软考系统规划与管理师考试证书含金量高吗?

2024年软考系统规划与管理师考试报名时间节点: 报名时间:2024年上半年软考将于3月中旬陆续开始报名 考试时间:上半年5月25日到28日,下半年11月9日到12日 分数线:所有科目成绩均须达到45分以上(包括45分)方可通过考试 成绩查询:可在“中国计算机技术职业资格网”上查询软考成绩 出成绩时间:预计在11月左右 证书领取时间:一般在考试成绩公布后3~4个月,各地领取时间有所不同

安全管理体系化的智慧油站开源了。

AI视频监控平台简介 AI视频监控平台是一款功能强大且简单易用的实时算法视频监控系统。它的愿景是最底层打通各大芯片厂商相互间的壁垒,省去繁琐重复的适配流程,实现芯片、算法、应用的全流程组合,从而大大减少企业级应用约95%的开发成本。用户只需在界面上进行简单的操作,就可以实现全视频的接入及布控。摄像头管理模块用于多种终端设备、智能设备的接入及管理。平台支持包括摄像头等终端感知设备接入,为整个平台提

Java ArrayList扩容机制 (源码解读)

结论:初始长度为10,若所需长度小于1.5倍原长度,则按照1.5倍扩容。若不够用则按照所需长度扩容。 一. 明确类内部重要变量含义         1:数组默认长度         2:这是一个共享的空数组实例,用于明确创建长度为0时的ArrayList ,比如通过 new ArrayList<>(0),ArrayList 内部的数组 elementData 会指向这个 EMPTY_EL