Linux上将进程、线程与CPU核绑定

2023-10-06 14:36

本文主要是介绍Linux上将进程、线程与CPU核绑定,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

      CPU亲和性(CPU Affinity)是某一进程(或线程)绑定到特定的CPU核(或CPU集合),从而使得该进程(或线程)只能运行在绑定的CPU核(或CPU集合)上。进程(或线程)本质上并不与CPU核绑定。每次进程(或线程)被调度执行时,它都可以由其关联列表中的任何CPU核执行。如果未显式设置关联列表,则进程(或线程)可以在任何CPU核上运行。

      一.查看CPU信息
      1.通过命令,执行:

cat /proc/cpuinfo

      (1).processor:指明每个物理CPU中逻辑处理器信息,序号从0开始;
      (2).cpu cores: 指明每个物理CPU中总核数;
      2.查看物理CPU个数,执行:

cat /proc/cpuinfo | grep "physical id" | sort | uniq | wc -l

      3.查看每个物理CPU中core的个数(即核数),执行:

cat /proc/cpuinfo | grep "cpu cores" | uniq

      4.查看逻辑CPU的个数,执行:

cat /proc/cpuinfo | grep "processor" | wc -l

      5.通过代码:sysconf函数或get_nprocs函数

void get_cpu_cores()
{// _SC_NPROCESSORS_CONF:系统配置的CPU核心数量// _SC_NPROCESSORS_ONLN:当前系统实际可用的CPU核心数量,可能会因为系统的运行状态而变化// 两个函数返回的值可能并不完全相同std::cout << "cpu cores(_SC_NPROCESSORS_CONF): " << sysconf(_SC_NPROCESSORS_CONF) << "\n";std::cout << "cpu cores(_SC_NPROCESSORS_ONLN): " << sysconf(_SC_NPROCESSORS_ONLN) << "\n";// get_nprocs_conf:系统配置的CPU核心数量; get_nprocs:当前系统中可用的CPU核心数量,此值可能小于get_nprocs_conf返回的值std::cout << "cpu cores(get_nprocs_conf): " << get_nprocs_conf() << "\n";std::cout << "cpu cores(get_nprocs): " << get_nprocs() << "\n"; 
}

      二.将进程绑定到指定的CPU核上
      1.通过taskset:(-p:pid; -c:cpu list)
      (1).查看执行程序(进程)运行在哪个CPU核上:taskset -p 进程ID(PID, 操作系统分配给每个进程的唯一标识符)
      如查看gnome-shell运行在哪个CPU核上:通过top命令查看gnome-shell的PID为1246,输入:taskset -pc 1246 ,执行结果如下图所示:

      (2).启动时指定:CPU标号从0开始,绑定多个CPU核,之间用逗号分隔
    taskset -c CPU_标号 可执行程序
      (3).启动后绑定:CPU标号从0开始,绑定多个CPU核,之间用逗号分隔
    taskset -pc CPU_标号 PID
      2.通过代码:sched_setaffinity和sched_setaffinity函数
      (1).sched_setaffinity(pid_t pid, size_t cpusetsize, const cpu_set_t *mask): 将ID为pid的线程的CPU亲和性掩码(CPU affinity mask)设置为mask指定的值。如果pid为0,则使用调用线程。参数cpusetsize是 mask指向的数据的长度(以字节为单位)。通常该参数被指定为sizeof(cpu_set_t)。
      (2).sched_getaffinity(pid_t pid, size_t cpusetsize, cpu_set_t *mask): 将ID为pid的线程的亲和性掩码写入mask指向的cpu_set_t结构中。cpusetsize参数指定掩码的大小(以字节为单位)。如果pid为零,则返回调用线程的掩码。

void set_processor_to_cpu_core()
{{ // sched_getaffinitycpu_set_t mask;CPU_ZERO(&mask);if (sched_getaffinity(0, sizeof(mask), &mask) != 0)std::cerr << "Error: fail to sched_getaffinity\n";for (auto i = 0; i < sysconf(_SC_NPROCESSORS_ONLN); ++i) {if (CPU_ISSET(i, &mask))std::cout << "CPU " << i << " is set\n";}
}{ // sched_setaffinitycpu_set_t mask;CPU_ZERO(&mask);// 可以多次调用CPU_SET,以指定将多个CPU核添加到mask中CPU_SET(0, &mask); // set affinity for core 0, set the bit that represents core 0if (sched_setaffinity(0, sizeof(mask), &mask) != 0)std::cerr << "Error: fail to sched_setaffinity\n";
}}

      三.将线程绑定到指定的CPU核上
      1.通过代码:pthread_setaffinity_np函数和pthread_getaffinity_np
      (1).pthread_setaffinity_np(pthread_t thread, size_t cpusetsize, const cpu_set_t *cpuset): 将线程thread的CPU亲和性掩码(CPU affinity mask)设置为cpuset指向的CPU集。如果调用成功,并且该线程当前未在cpuset中的某个CPU上运行,则它将迁移到这些CPU中的一个。
      (2).pthread_getaffinity_np(pthread_t thread, size_t cpusetsize, cpu_set_t *cpuset): 获取cpuset指向的缓冲区中线程thread的CPU亲和性掩码。

void get_thread_id(int n)
{std::cout << "thread id: " << std::this_thread::get_id() << ", on cpu: " << sched_getcpu() << "\n";std::this_thread::sleep_for(std::chrono::seconds(n));
}void set_thread_to_cpu_core()
{// 最大的硬件并发线程数std::cout << "Support concurrent threads: " << std::thread::hardware_concurrency() << "\n";std::thread th1(get_thread_id, 5), th2(get_thread_id, 5);
{ // pthread_getaffinity_npcpu_set_t cpuset;CPU_ZERO(&cpuset);if (pthread_getaffinity_np(th1.native_handle(), sizeof(cpuset), &cpuset) != 0)std::cerr << "Error: fail to pthread_getaffinity_np\n";// for (auto i = 0; i < sysconf(_SC_NPROCESSORS_ONLN); ++i) {//     if (CPU_ISSET(i, &cpuset))//         std::cout << "CPU " << i << " is set\n";// }
}{ // pthread_setaffinity_npcpu_set_t cpuset;CPU_ZERO(&cpuset);// 可以多次调用CPU_SET,以指定将多个CPU核添加到cpuset中CPU_SET(0, &cpuset); // set affinity for core 0, set the bit that represents core 0if (pthread_setaffinity_np(th2.native_handle(), sizeof(cpuset), &cpuset) != 0)std::cerr << "Error: fail to pthread_setaffinity_np\n";}th1.join();th2.join();
}

      以上测试代码执行结果如下图所示:虚拟机

      GitHub:https://github.com/fengbingchun/Linux_Code_Test

这篇关于Linux上将进程、线程与CPU核绑定的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/153286

相关文章

linux-基础知识3

打包和压缩 zip 安装zip软件包 yum -y install zip unzip 压缩打包命令: zip -q -r -d -u 压缩包文件名 目录和文件名列表 -q:不显示命令执行过程-r:递归处理,打包各级子目录和文件-u:把文件增加/替换到压缩包中-d:从压缩包中删除指定的文件 解压:unzip 压缩包名 打包文件 把压缩包从服务器下载到本地 把压缩包上传到服务器(zip

Linux 网络编程 --- 应用层

一、自定义协议和序列化反序列化 代码: 序列化反序列化实现网络版本计算器 二、HTTP协议 1、谈两个简单的预备知识 https://www.baidu.com/ --- 域名 --- 域名解析 --- IP地址 http的端口号为80端口,https的端口号为443 url为统一资源定位符。CSDNhttps://mp.csdn.net/mp_blog/creation/editor

【Python编程】Linux创建虚拟环境并配置与notebook相连接

1.创建 使用 venv 创建虚拟环境。例如,在当前目录下创建一个名为 myenv 的虚拟环境: python3 -m venv myenv 2.激活 激活虚拟环境使其成为当前终端会话的活动环境。运行: source myenv/bin/activate 3.与notebook连接 在虚拟环境中,使用 pip 安装 Jupyter 和 ipykernel: pip instal

Linux_kernel驱动开发11

一、改回nfs方式挂载根文件系统         在产品将要上线之前,需要制作不同类型格式的根文件系统         在产品研发阶段,我们还是需要使用nfs的方式挂载根文件系统         优点:可以直接在上位机中修改文件系统内容,延长EMMC的寿命         【1】重启上位机nfs服务         sudo service nfs-kernel-server resta

【Linux 从基础到进阶】Ansible自动化运维工具使用

Ansible自动化运维工具使用 Ansible 是一款开源的自动化运维工具,采用无代理架构(agentless),基于 SSH 连接进行管理,具有简单易用、灵活强大、可扩展性高等特点。它广泛用于服务器管理、应用部署、配置管理等任务。本文将介绍 Ansible 的安装、基本使用方法及一些实际运维场景中的应用,旨在帮助运维人员快速上手并熟练运用 Ansible。 1. Ansible的核心概念

Linux服务器Java启动脚本

Linux服务器Java启动脚本 1、初版2、优化版本3、常用脚本仓库 本文章介绍了如何在Linux服务器上执行Java并启动jar包, 通常我们会使用nohup直接启动,但是还是需要手动停止然后再次启动, 那如何更优雅的在服务器上启动jar包呢,让我们一起探讨一下吧。 1、初版 第一个版本是常用的做法,直接使用nohup后台启动jar包, 并将日志输出到当前文件夹n

[Linux]:进程(下)

✨✨ 欢迎大家来到贝蒂大讲堂✨✨ 🎈🎈养成好习惯,先赞后看哦~🎈🎈 所属专栏:Linux学习 贝蒂的主页:Betty’s blog 1. 进程终止 1.1 进程退出的场景 进程退出只有以下三种情况: 代码运行完毕,结果正确。代码运行完毕,结果不正确。代码异常终止(进程崩溃)。 1.2 进程退出码 在编程中,我们通常认为main函数是代码的入口,但实际上它只是用户级

【Linux】应用层http协议

一、HTTP协议 1.1 简要介绍一下HTTP        我们在网络的应用层中可以自己定义协议,但是,已经有大佬定义了一些现成的,非常好用的应用层协议,供我们直接使用,HTTP(超文本传输协议)就是其中之一。        在互联网世界中,HTTP(超文本传输协议)是一个至关重要的协议,他定义了客户端(如浏览器)与服务器之间如何进行通信,以交换或者传输超文本(比如HTML文档)。

如何编写Linux PCIe设备驱动器 之二

如何编写Linux PCIe设备驱动器 之二 功能(capability)集功能(capability)APIs通过pci_bus_read_config完成功能存取功能APIs参数pos常量值PCI功能结构 PCI功能IDMSI功能电源功率管理功能 功能(capability)集 功能(capability)APIs int pcie_capability_read_wo