Linux上将进程、线程与CPU核绑定

2023-10-06 14:36

本文主要是介绍Linux上将进程、线程与CPU核绑定,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

      CPU亲和性(CPU Affinity)是某一进程(或线程)绑定到特定的CPU核(或CPU集合),从而使得该进程(或线程)只能运行在绑定的CPU核(或CPU集合)上。进程(或线程)本质上并不与CPU核绑定。每次进程(或线程)被调度执行时,它都可以由其关联列表中的任何CPU核执行。如果未显式设置关联列表,则进程(或线程)可以在任何CPU核上运行。

      一.查看CPU信息
      1.通过命令,执行:

cat /proc/cpuinfo

      (1).processor:指明每个物理CPU中逻辑处理器信息,序号从0开始;
      (2).cpu cores: 指明每个物理CPU中总核数;
      2.查看物理CPU个数,执行:

cat /proc/cpuinfo | grep "physical id" | sort | uniq | wc -l

      3.查看每个物理CPU中core的个数(即核数),执行:

cat /proc/cpuinfo | grep "cpu cores" | uniq

      4.查看逻辑CPU的个数,执行:

cat /proc/cpuinfo | grep "processor" | wc -l

      5.通过代码:sysconf函数或get_nprocs函数

void get_cpu_cores()
{// _SC_NPROCESSORS_CONF:系统配置的CPU核心数量// _SC_NPROCESSORS_ONLN:当前系统实际可用的CPU核心数量,可能会因为系统的运行状态而变化// 两个函数返回的值可能并不完全相同std::cout << "cpu cores(_SC_NPROCESSORS_CONF): " << sysconf(_SC_NPROCESSORS_CONF) << "\n";std::cout << "cpu cores(_SC_NPROCESSORS_ONLN): " << sysconf(_SC_NPROCESSORS_ONLN) << "\n";// get_nprocs_conf:系统配置的CPU核心数量; get_nprocs:当前系统中可用的CPU核心数量,此值可能小于get_nprocs_conf返回的值std::cout << "cpu cores(get_nprocs_conf): " << get_nprocs_conf() << "\n";std::cout << "cpu cores(get_nprocs): " << get_nprocs() << "\n"; 
}

      二.将进程绑定到指定的CPU核上
      1.通过taskset:(-p:pid; -c:cpu list)
      (1).查看执行程序(进程)运行在哪个CPU核上:taskset -p 进程ID(PID, 操作系统分配给每个进程的唯一标识符)
      如查看gnome-shell运行在哪个CPU核上:通过top命令查看gnome-shell的PID为1246,输入:taskset -pc 1246 ,执行结果如下图所示:

      (2).启动时指定:CPU标号从0开始,绑定多个CPU核,之间用逗号分隔
    taskset -c CPU_标号 可执行程序
      (3).启动后绑定:CPU标号从0开始,绑定多个CPU核,之间用逗号分隔
    taskset -pc CPU_标号 PID
      2.通过代码:sched_setaffinity和sched_setaffinity函数
      (1).sched_setaffinity(pid_t pid, size_t cpusetsize, const cpu_set_t *mask): 将ID为pid的线程的CPU亲和性掩码(CPU affinity mask)设置为mask指定的值。如果pid为0,则使用调用线程。参数cpusetsize是 mask指向的数据的长度(以字节为单位)。通常该参数被指定为sizeof(cpu_set_t)。
      (2).sched_getaffinity(pid_t pid, size_t cpusetsize, cpu_set_t *mask): 将ID为pid的线程的亲和性掩码写入mask指向的cpu_set_t结构中。cpusetsize参数指定掩码的大小(以字节为单位)。如果pid为零,则返回调用线程的掩码。

void set_processor_to_cpu_core()
{{ // sched_getaffinitycpu_set_t mask;CPU_ZERO(&mask);if (sched_getaffinity(0, sizeof(mask), &mask) != 0)std::cerr << "Error: fail to sched_getaffinity\n";for (auto i = 0; i < sysconf(_SC_NPROCESSORS_ONLN); ++i) {if (CPU_ISSET(i, &mask))std::cout << "CPU " << i << " is set\n";}
}{ // sched_setaffinitycpu_set_t mask;CPU_ZERO(&mask);// 可以多次调用CPU_SET,以指定将多个CPU核添加到mask中CPU_SET(0, &mask); // set affinity for core 0, set the bit that represents core 0if (sched_setaffinity(0, sizeof(mask), &mask) != 0)std::cerr << "Error: fail to sched_setaffinity\n";
}}

      三.将线程绑定到指定的CPU核上
      1.通过代码:pthread_setaffinity_np函数和pthread_getaffinity_np
      (1).pthread_setaffinity_np(pthread_t thread, size_t cpusetsize, const cpu_set_t *cpuset): 将线程thread的CPU亲和性掩码(CPU affinity mask)设置为cpuset指向的CPU集。如果调用成功,并且该线程当前未在cpuset中的某个CPU上运行,则它将迁移到这些CPU中的一个。
      (2).pthread_getaffinity_np(pthread_t thread, size_t cpusetsize, cpu_set_t *cpuset): 获取cpuset指向的缓冲区中线程thread的CPU亲和性掩码。

void get_thread_id(int n)
{std::cout << "thread id: " << std::this_thread::get_id() << ", on cpu: " << sched_getcpu() << "\n";std::this_thread::sleep_for(std::chrono::seconds(n));
}void set_thread_to_cpu_core()
{// 最大的硬件并发线程数std::cout << "Support concurrent threads: " << std::thread::hardware_concurrency() << "\n";std::thread th1(get_thread_id, 5), th2(get_thread_id, 5);
{ // pthread_getaffinity_npcpu_set_t cpuset;CPU_ZERO(&cpuset);if (pthread_getaffinity_np(th1.native_handle(), sizeof(cpuset), &cpuset) != 0)std::cerr << "Error: fail to pthread_getaffinity_np\n";// for (auto i = 0; i < sysconf(_SC_NPROCESSORS_ONLN); ++i) {//     if (CPU_ISSET(i, &cpuset))//         std::cout << "CPU " << i << " is set\n";// }
}{ // pthread_setaffinity_npcpu_set_t cpuset;CPU_ZERO(&cpuset);// 可以多次调用CPU_SET,以指定将多个CPU核添加到cpuset中CPU_SET(0, &cpuset); // set affinity for core 0, set the bit that represents core 0if (pthread_setaffinity_np(th2.native_handle(), sizeof(cpuset), &cpuset) != 0)std::cerr << "Error: fail to pthread_setaffinity_np\n";}th1.join();th2.join();
}

      以上测试代码执行结果如下图所示:虚拟机

      GitHub:https://github.com/fengbingchun/Linux_Code_Test

这篇关于Linux上将进程、线程与CPU核绑定的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/153286

相关文章

Linux换行符的使用方法详解

《Linux换行符的使用方法详解》本文介绍了Linux中常用的换行符LF及其在文件中的表示,展示了如何使用sed命令替换换行符,并列举了与换行符处理相关的Linux命令,通过代码讲解的非常详细,需要的... 目录简介检测文件中的换行符使用 cat -A 查看换行符使用 od -c 检查字符换行符格式转换将

Linux系统配置NAT网络模式的详细步骤(附图文)

《Linux系统配置NAT网络模式的详细步骤(附图文)》本文详细指导如何在VMware环境下配置NAT网络模式,包括设置主机和虚拟机的IP地址、网关,以及针对Linux和Windows系统的具体步骤,... 目录一、配置NAT网络模式二、设置虚拟机交换机网关2.1 打开虚拟机2.2 管理员授权2.3 设置子

Linux系统中卸载与安装JDK的详细教程

《Linux系统中卸载与安装JDK的详细教程》本文详细介绍了如何在Linux系统中通过Xshell和Xftp工具连接与传输文件,然后进行JDK的安装与卸载,安装步骤包括连接Linux、传输JDK安装包... 目录1、卸载1.1 linux删除自带的JDK1.2 Linux上卸载自己安装的JDK2、安装2.1

Linux卸载自带jdk并安装新jdk版本的图文教程

《Linux卸载自带jdk并安装新jdk版本的图文教程》在Linux系统中,有时需要卸载预装的OpenJDK并安装特定版本的JDK,例如JDK1.8,所以本文给大家详细介绍了Linux卸载自带jdk并... 目录Ⅰ、卸载自带jdkⅡ、安装新版jdkⅠ、卸载自带jdk1、输入命令查看旧jdkrpm -qa

Linux samba共享慢的原因及解决方案

《Linuxsamba共享慢的原因及解决方案》:本文主要介绍Linuxsamba共享慢的原因及解决方案,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录linux samba共享慢原因及解决问题表现原因解决办法总结Linandroidux samba共享慢原因及解决

Spring Boot3虚拟线程的使用步骤详解

《SpringBoot3虚拟线程的使用步骤详解》虚拟线程是Java19中引入的一个新特性,旨在通过简化线程管理来提升应用程序的并发性能,:本文主要介绍SpringBoot3虚拟线程的使用步骤,... 目录问题根源分析解决方案验证验证实验实验1:未启用keep-alive实验2:启用keep-alive扩展建

新特性抢先看! Ubuntu 25.04 Beta 发布:Linux 6.14 内核

《新特性抢先看!Ubuntu25.04Beta发布:Linux6.14内核》Canonical公司近日发布了Ubuntu25.04Beta版,这一版本被赋予了一个活泼的代号——“Plu... Canonical 昨日(3 月 27 日)放出了 Beta 版 Ubuntu 25.04 系统镜像,代号“Pluc

Linux安装MySQL的教程

《Linux安装MySQL的教程》:本文主要介绍Linux安装MySQL的教程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录linux安装mysql1.Mysql官网2.我的存放路径3.解压mysql文件到当前目录4.重命名一下5.创建mysql用户组和用户并修

Linux上设置Ollama服务配置(常用环境变量)

《Linux上设置Ollama服务配置(常用环境变量)》本文主要介绍了Linux上设置Ollama服务配置(常用环境变量),Ollama提供了多种环境变量供配置,如调试模式、模型目录等,下面就来介绍一... 目录在 linux 上设置环境变量配置 OllamPOgxSRJfa手动安装安装特定版本查看日志在

Linux系统之主机网络配置方式

《Linux系统之主机网络配置方式》:本文主要介绍Linux系统之主机网络配置方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、查看主机的网络参数1、查看主机名2、查看IP地址3、查看网关4、查看DNS二、配置网卡1、修改网卡配置文件2、nmcli工具【通用