imageLoader解析

2023-10-04 03:59
文章标签 解析 imageloader

本文主要是介绍imageLoader解析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

ImageLoader是最早开源的 Android 图片缓存库, 强大的缓存机制, 早期使用这个图片加载框架的android应用非常多, 至今仍然有不少Android 开发者在使用。

ImagerLoader特征

  1. 支持本地、网络图片,且支持图片下载的进度监听
  2. 支持个性化配置ImagerLoader,如线程池,内存缓存策略,图片显示选项等
  3. 三层缓存加快图片的加载速度
  4. 支持图片压缩

开始使用

鉴于这篇是对ImageLoader源码来进行解析,我们首先回顾一下ImageLoader的使用。
可以通过这里下载universal-imager-loader的jar包,并将其导入到自己的项目中。
然后可以在Application或者Activity中初始化ImageLoade,参考如下:

public class YourApplication extends Application {@Overridepublic void onCreate() {super.onCreate();//创建默认的ImageLoader配置参数  ImageLoaderConfiguration configuration = ImageLoaderConfiguration  .createDefault(this);  //Initialize ImageLoader with configuration.  ImageLoader.getInstance().init(configuration);  }
}

当然,如果涉及到网络操作和磁盘缓存的话,有或者是在Application中进行初始化的话,记得要在Manifest中进行申明:

<manifest>  <uses-permission android:name="android.permission.INTERNET" />  <!-- Include next permission if you want to allow UIL to cache images on SD card -->  <uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE" />  ...  <application android:name="YourApplication">  ...  </application>  
</manifest>  

接下来我们就可以愉快的来加载图片了,如下所示:

ImageLoader.getInstance().displayImage(imageUri, imageView);

当然,如果你想添加监听,可以这么写:

ImageLoader.getInstance().loadImage(imageUrl, new SimpleImageLoadingListener(){  @Override  public void onLoadingComplete(String imageUri, View view,  Bitmap loadedImage) {  super.onLoadingComplete(imageUri, view, loadedImage);  mImageView.setImageBitmap(loadedImage);  }  });  

至于更多的用法这里就不介绍了,如果有需要,可以参看这篇博客,了解更多关于ImageLoader的用法。下面就开始了源码的解析之路。

ImageLoaderConfiguration配置实现

我们首先还是从imageLoader的配置开始开始源码的探究之旅把。在上面的使用实例中,我们使用createDefault()方法来初始化配置,那么imageLoader的默认配置究竟是些什么呢?下面直接上代码:

public static ImageLoaderConfiguration createDefault(Context context) {return new Builder(context).build();
}public ImageLoaderConfiguration build() {initEmptyFieldsWithDefaultValues();return new ImageLoaderConfiguration(this);
}private void initEmptyFieldsWithDefaultValues() {if (taskExecutor == null) {taskExecutor = DefaultConfigurationFactory.createExecutor(threadPoolSize, threadPriority, tasksProcessingType);} else {customExecutor = true;}if (taskExecutorForCachedImages == null) {taskExecutorForCachedImages = DefaultConfigurationFactory.createExecutor(threadPoolSize, threadPriority, tasksProcessingType);} else {customExecutorForCachedImages = true;}if (diskCache == null) {if (diskCacheFileNameGenerator == null) {diskCacheFileNameGenerator = DefaultConfigurationFactory.createFileNameGenerator();}diskCache = DefaultConfigurationFactory.createDiskCache(context, diskCacheFileNameGenerator, diskCacheSize, diskCacheFileCount);}if (memoryCache == null) {memoryCache = DefaultConfigurationFactory.createMemoryCache(context, memoryCacheSize);}if (denyCacheImageMultipleSizesInMemory) {memoryCache = new FuzzyKeyMemoryCache(memoryCache, MemoryCacheUtils.createFuzzyKeyComparator());}if (downloader == null) {downloader = DefaultConfigurationFactory.createImageDownloader(context);}if (decoder == null) {decoder = DefaultConfigurationFactory.createImageDecoder(writeLogs);}if (defaultDisplayImageOptions == null) {defaultDisplayImageOptions = DisplayImageOptions.createSimple();}}
}   private ImageLoaderConfiguration(final Builder builder) {resources = builder.context.getResources();//程序本地资源访问器maxImageWidthForMemoryCache = builder.maxImageWidthForMemoryCache;//内存缓存的图片最大宽度 maxImageHeightForMemoryCache = builder.maxImageHeightForMemoryCache;//内存缓存的图片最大高度 maxImageWidthForDiskCache = builder.maxImageWidthForDiskCache;//磁盘缓存的图片最大宽度 maxImageHeightForDiskCache = builder.maxImageHeightForDiskCache;//磁盘缓存的图片最大高度 processorForDiskCache = builder.processorForDiskCache;//图片处理器,用于处理从磁盘缓存中读取到的图片 taskExecutor = builder.taskExecutor;//ImageLoaderEngine中用于执行从源获取图片任务的 Executor。taskExecutorForCachedImages = builder.taskExecutorForCachedImages;//ImageLoaderEngine中用于执行从缓存获取图片任务的 Executor。threadPoolSize = builder.threadPoolSize;//上面两个默认线程池的核心池大小,即最大并发数。threadPriority = builder.threadPriority;//上面两个默认线程池的线程优先级。tasksProcessingType = builder.tasksProcessingType;//上面两个默认线程池的线程队列类型。目前只有 FIFO, LIFO 两种可供选择。diskCache = builder.diskCache;//图片磁盘缓存,一般放在 SD 卡。memoryCache = builder.memoryCache;//图片内存缓存。defaultDisplayImageOptions = builder.defaultDisplayImageOptions;//图片显示的配置项。比如加载前、加载中、加载失败应该显示的占位图片,图片是否需要在磁盘缓存,是否需要在内存缓存等。downloader = builder.downloader;//图片下载器。decoder = builder.decoder;//图片解码器,内部可使用我们常用的BitmapFactory.decode(…)将图片资源解码成Bitmap对象。customExecutor = builder.customExecutor;//用户是否自定义了上面的 taskExecutor。customExecutorForCachedImages = builder.customExecutorForCachedImages;//用户是否自定义了上面的 taskExecutorForCachedImages。networkDeniedDownloader = new NetworkDeniedImageDownloader(downloader);//不允许访问网络的图片下载器。slowNetworkDownloader = new SlowNetworkImageDownloader(downloader);//慢网络情况下的图片下载器。L.writeDebugLogs(builder.writeLogs);
}

上面的代码有点多,但是很简单也很清晰,就是一些列初始化的代码。通过一些系列的调用,在initEmptyFieldsWithDefaultValues方法中对一些没有配置的进行的项进行配置,并通过ImageLoaderConfiguration给出默认的参数配置。对于其中的一些配置,在上面的注释中已经表明,ImageLoaderConfiguration中默认的配置,可以参考第48-73行。
至于initEmptyFieldsWithDefaultValues中的配置,在这里进行简单的介绍:
* taskExecutor 从源获取图片任务的线程池
* taskExecutorForCachedImages 用于执行从缓存获取图片任务的线程池
前面两个线程池的参数如下:

核心线程数最大线程数空闲线程等待时间容器
330sFIFO

前面两个线程池如果用户自定义的相应的线程池来实现的话,就会将customExecutor置为true,或将customExecutorForCachedImages置为true。其实customExecutor存在的意义就在于判断用户有没有自定义从源获取图片任务的线程池,customExecutorForCachedImages存在的意义判断在于用户判断用户有没有重写从缓存获取图片的线程池。
* diskCacheFileNameGenerator 默认实现为HashCodeFileNameGenerator,即用mageUri.hashCode()值当前图片名字。
* diskCache用于表示图片磁盘的缓存,默认实现为createDiskCache,默认的算法为LruDiskCache算法,缓存的目录为SD卡下的/data/data/" + context.getPackageName() + "/cache/uil-images目录下。
* memoryCache用于表示图片内存的缓存,默认实现为createMemoryCache,默认使用的算法为LruMemoryCache
* denyCacheImageMultipleSizesInMemorytrue时,表示内存缓存不允许缓存一张图片的多个尺寸。这个时候用通过FuzzyKeyMemoryCache来构建memoryCache
* downloader表示图片下载器,默认实现为createImageDownloader,最终通过BaseImageDownloader构建下载器,其下载器中重要的两个参数分别为:连接超时时间connectTimeout默认值为5分钟,读取超时时间readTimeout默认值为20分钟。
* decoder 表示图片解码器,默认实现为createImageDecoder,最终通过BaseImageDecoder实现。
* defaultDisplayImageOptions 表示默认参数,最终回调到DisplayImageOptions方法中,里面设计相关的参数初始化。这里就不展开了。

加载配置

我们首先看ApplicationimgaerLoader设置配置的方法。

 ImageLoader.getInstance().init(configuration);

接下来我们继续分析上面的代码是如何将配置应用到ImageLoader中的。首先是ImageLoader.getInstance()实例化一个ImageLoader,通过代码来看实例化的过程:

public static ImageLoader getInstance() {if (instance == null) {synchronized (ImageLoader.class) {if (instance == null) {instance = new ImageLoader();}}}return instance;
}

可以看出来,getInstance就是获取一个ImageLoader实例,运用了一个双重锁的单利模式,很简单,就不做解释了。
重点看init方法。具体在ImageLoader类中的实现如下:

public synchronized void init(ImageLoaderConfiguration configuration) {if (configuration == null) {throw new IllegalArgumentException(ERROR_INIT_CONFIG_WITH_NULL);}if (this.configuration == null) {L.d(LOG_INIT_CONFIG);engine = new ImageLoaderEngine(configuration);this.configuration = configuration;} else {L.w(WARNING_RE_INIT_CONFIG);}}

可以看出来,init的实现也是非常简单的。首先判断传入的configuration参数是否为空,为空就直接抛出一个异常,不为空就判断当前类属性configuration是否为空,类中configuration属性为空时调用ImageLoaderEngine构建engine对象,否则就打印警告日志。所以整个方法中最重要的一个语句就是new ImageLoaderEngine(configuration);。这里首先介绍一个ImageLoaderEngine类的作用。简单描述就是ImageLoaderEngine是任务分发器,负责分发LoadAndDisplayImageTaskProcessAndDisplayImageTask给具体的线程池去执行。具体实现后面会讲到。

加载图片

通过上面两个步骤,imgaeLoder的参数配置已经设置完毕,接下来我们就可以用imageLoader加载图片了。下面是三种加载图片的方式:
加载方式一,异步加载并显示图片到对应的imagerAware上

ImageLoader.getInstance().displayImage(imageUrl,imageView);

加载方式二,异步加载图片并执行回调接口

ImageLoader.getInstance().loadImage(imageUrl,new  ImageLoadingListener() {@Overridepublic void onLoadingStarted(String imageUri, View view) {}@Overridepublic void onLoadingFailed(String imageUri, View view, FailReason failReason) {}@Overridepublic void onLoadingComplete(String imageUri, View view, Bitmap loadedImage) {}

这篇关于imageLoader解析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1233

相关文章

Java的IO模型、Netty原理解析

《Java的IO模型、Netty原理解析》Java的I/O是以流的方式进行数据输入输出的,Java的类库涉及很多领域的IO内容:标准的输入输出,文件的操作、网络上的数据传输流、字符串流、对象流等,这篇... 目录1.什么是IO2.同步与异步、阻塞与非阻塞3.三种IO模型BIO(blocking I/O)NI

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步

Redis中高并发读写性能的深度解析与优化

《Redis中高并发读写性能的深度解析与优化》Redis作为一款高性能的内存数据库,广泛应用于缓存、消息队列、实时统计等场景,本文将深入探讨Redis的读写并发能力,感兴趣的小伙伴可以了解下... 目录引言一、Redis 并发能力概述1.1 Redis 的读写性能1.2 影响 Redis 并发能力的因素二、

Spring MVC使用视图解析的问题解读

《SpringMVC使用视图解析的问题解读》:本文主要介绍SpringMVC使用视图解析的问题解读,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Spring MVC使用视图解析1. 会使用视图解析的情况2. 不会使用视图解析的情况总结Spring MVC使用视图

利用Python和C++解析gltf文件的示例详解

《利用Python和C++解析gltf文件的示例详解》gltf,全称是GLTransmissionFormat,是一种开放的3D文件格式,Python和C++是两个非常强大的工具,下面我们就来看看如何... 目录什么是gltf文件选择语言的原因安装必要的库解析gltf文件的步骤1. 读取gltf文件2. 提

Java中的runnable 和 callable 区别解析

《Java中的runnable和callable区别解析》Runnable接口用于定义不需要返回结果的任务,而Callable接口可以返回结果并抛出异常,通常与Future结合使用,Runnab... 目录1. Runnable接口1.1 Runnable的定义1.2 Runnable的特点1.3 使用Ru

使用EasyExcel实现简单的Excel表格解析操作

《使用EasyExcel实现简单的Excel表格解析操作》:本文主要介绍如何使用EasyExcel完成简单的表格解析操作,同时实现了大量数据情况下数据的分次批量入库,并记录每条数据入库的状态,感兴... 目录前言固定模板及表数据格式的解析实现Excel模板内容对应的实体类实现AnalysisEventLis

Java的volatile和sychronized底层实现原理解析

《Java的volatile和sychronized底层实现原理解析》文章详细介绍了Java中的synchronized和volatile关键字的底层实现原理,包括字节码层面、JVM层面的实现细节,以... 目录1. 概览2. Synchronized2.1 字节码层面2.2 JVM层面2.2.1 ente

Redis 内存淘汰策略深度解析(最新推荐)

《Redis内存淘汰策略深度解析(最新推荐)》本文详细探讨了Redis的内存淘汰策略、实现原理、适用场景及最佳实践,介绍了八种内存淘汰策略,包括noeviction、LRU、LFU、TTL、Rand... 目录一、 内存淘汰策略概述二、内存淘汰策略详解2.1 ​noeviction(不淘汰)​2.2 ​LR

IDEA与JDK、Maven安装配置完整步骤解析

《IDEA与JDK、Maven安装配置完整步骤解析》:本文主要介绍如何安装和配置IDE(IntelliJIDEA),包括IDE的安装步骤、JDK的下载与配置、Maven的安装与配置,以及如何在I... 目录1. IDE安装步骤2.配置操作步骤3. JDK配置下载JDK配置JDK环境变量4. Maven配置下