imageLoader解析

2023-10-04 03:59
文章标签 解析 imageloader

本文主要是介绍imageLoader解析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

ImageLoader是最早开源的 Android 图片缓存库, 强大的缓存机制, 早期使用这个图片加载框架的android应用非常多, 至今仍然有不少Android 开发者在使用。

ImagerLoader特征

  1. 支持本地、网络图片,且支持图片下载的进度监听
  2. 支持个性化配置ImagerLoader,如线程池,内存缓存策略,图片显示选项等
  3. 三层缓存加快图片的加载速度
  4. 支持图片压缩

开始使用

鉴于这篇是对ImageLoader源码来进行解析,我们首先回顾一下ImageLoader的使用。
可以通过这里下载universal-imager-loader的jar包,并将其导入到自己的项目中。
然后可以在Application或者Activity中初始化ImageLoade,参考如下:

public class YourApplication extends Application {@Overridepublic void onCreate() {super.onCreate();//创建默认的ImageLoader配置参数  ImageLoaderConfiguration configuration = ImageLoaderConfiguration  .createDefault(this);  //Initialize ImageLoader with configuration.  ImageLoader.getInstance().init(configuration);  }
}

当然,如果涉及到网络操作和磁盘缓存的话,有或者是在Application中进行初始化的话,记得要在Manifest中进行申明:

<manifest>  <uses-permission android:name="android.permission.INTERNET" />  <!-- Include next permission if you want to allow UIL to cache images on SD card -->  <uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE" />  ...  <application android:name="YourApplication">  ...  </application>  
</manifest>  

接下来我们就可以愉快的来加载图片了,如下所示:

ImageLoader.getInstance().displayImage(imageUri, imageView);

当然,如果你想添加监听,可以这么写:

ImageLoader.getInstance().loadImage(imageUrl, new SimpleImageLoadingListener(){  @Override  public void onLoadingComplete(String imageUri, View view,  Bitmap loadedImage) {  super.onLoadingComplete(imageUri, view, loadedImage);  mImageView.setImageBitmap(loadedImage);  }  });  

至于更多的用法这里就不介绍了,如果有需要,可以参看这篇博客,了解更多关于ImageLoader的用法。下面就开始了源码的解析之路。

ImageLoaderConfiguration配置实现

我们首先还是从imageLoader的配置开始开始源码的探究之旅把。在上面的使用实例中,我们使用createDefault()方法来初始化配置,那么imageLoader的默认配置究竟是些什么呢?下面直接上代码:

public static ImageLoaderConfiguration createDefault(Context context) {return new Builder(context).build();
}public ImageLoaderConfiguration build() {initEmptyFieldsWithDefaultValues();return new ImageLoaderConfiguration(this);
}private void initEmptyFieldsWithDefaultValues() {if (taskExecutor == null) {taskExecutor = DefaultConfigurationFactory.createExecutor(threadPoolSize, threadPriority, tasksProcessingType);} else {customExecutor = true;}if (taskExecutorForCachedImages == null) {taskExecutorForCachedImages = DefaultConfigurationFactory.createExecutor(threadPoolSize, threadPriority, tasksProcessingType);} else {customExecutorForCachedImages = true;}if (diskCache == null) {if (diskCacheFileNameGenerator == null) {diskCacheFileNameGenerator = DefaultConfigurationFactory.createFileNameGenerator();}diskCache = DefaultConfigurationFactory.createDiskCache(context, diskCacheFileNameGenerator, diskCacheSize, diskCacheFileCount);}if (memoryCache == null) {memoryCache = DefaultConfigurationFactory.createMemoryCache(context, memoryCacheSize);}if (denyCacheImageMultipleSizesInMemory) {memoryCache = new FuzzyKeyMemoryCache(memoryCache, MemoryCacheUtils.createFuzzyKeyComparator());}if (downloader == null) {downloader = DefaultConfigurationFactory.createImageDownloader(context);}if (decoder == null) {decoder = DefaultConfigurationFactory.createImageDecoder(writeLogs);}if (defaultDisplayImageOptions == null) {defaultDisplayImageOptions = DisplayImageOptions.createSimple();}}
}   private ImageLoaderConfiguration(final Builder builder) {resources = builder.context.getResources();//程序本地资源访问器maxImageWidthForMemoryCache = builder.maxImageWidthForMemoryCache;//内存缓存的图片最大宽度 maxImageHeightForMemoryCache = builder.maxImageHeightForMemoryCache;//内存缓存的图片最大高度 maxImageWidthForDiskCache = builder.maxImageWidthForDiskCache;//磁盘缓存的图片最大宽度 maxImageHeightForDiskCache = builder.maxImageHeightForDiskCache;//磁盘缓存的图片最大高度 processorForDiskCache = builder.processorForDiskCache;//图片处理器,用于处理从磁盘缓存中读取到的图片 taskExecutor = builder.taskExecutor;//ImageLoaderEngine中用于执行从源获取图片任务的 Executor。taskExecutorForCachedImages = builder.taskExecutorForCachedImages;//ImageLoaderEngine中用于执行从缓存获取图片任务的 Executor。threadPoolSize = builder.threadPoolSize;//上面两个默认线程池的核心池大小,即最大并发数。threadPriority = builder.threadPriority;//上面两个默认线程池的线程优先级。tasksProcessingType = builder.tasksProcessingType;//上面两个默认线程池的线程队列类型。目前只有 FIFO, LIFO 两种可供选择。diskCache = builder.diskCache;//图片磁盘缓存,一般放在 SD 卡。memoryCache = builder.memoryCache;//图片内存缓存。defaultDisplayImageOptions = builder.defaultDisplayImageOptions;//图片显示的配置项。比如加载前、加载中、加载失败应该显示的占位图片,图片是否需要在磁盘缓存,是否需要在内存缓存等。downloader = builder.downloader;//图片下载器。decoder = builder.decoder;//图片解码器,内部可使用我们常用的BitmapFactory.decode(…)将图片资源解码成Bitmap对象。customExecutor = builder.customExecutor;//用户是否自定义了上面的 taskExecutor。customExecutorForCachedImages = builder.customExecutorForCachedImages;//用户是否自定义了上面的 taskExecutorForCachedImages。networkDeniedDownloader = new NetworkDeniedImageDownloader(downloader);//不允许访问网络的图片下载器。slowNetworkDownloader = new SlowNetworkImageDownloader(downloader);//慢网络情况下的图片下载器。L.writeDebugLogs(builder.writeLogs);
}

上面的代码有点多,但是很简单也很清晰,就是一些列初始化的代码。通过一些系列的调用,在initEmptyFieldsWithDefaultValues方法中对一些没有配置的进行的项进行配置,并通过ImageLoaderConfiguration给出默认的参数配置。对于其中的一些配置,在上面的注释中已经表明,ImageLoaderConfiguration中默认的配置,可以参考第48-73行。
至于initEmptyFieldsWithDefaultValues中的配置,在这里进行简单的介绍:
* taskExecutor 从源获取图片任务的线程池
* taskExecutorForCachedImages 用于执行从缓存获取图片任务的线程池
前面两个线程池的参数如下:

核心线程数最大线程数空闲线程等待时间容器
330sFIFO

前面两个线程池如果用户自定义的相应的线程池来实现的话,就会将customExecutor置为true,或将customExecutorForCachedImages置为true。其实customExecutor存在的意义就在于判断用户有没有自定义从源获取图片任务的线程池,customExecutorForCachedImages存在的意义判断在于用户判断用户有没有重写从缓存获取图片的线程池。
* diskCacheFileNameGenerator 默认实现为HashCodeFileNameGenerator,即用mageUri.hashCode()值当前图片名字。
* diskCache用于表示图片磁盘的缓存,默认实现为createDiskCache,默认的算法为LruDiskCache算法,缓存的目录为SD卡下的/data/data/" + context.getPackageName() + "/cache/uil-images目录下。
* memoryCache用于表示图片内存的缓存,默认实现为createMemoryCache,默认使用的算法为LruMemoryCache
* denyCacheImageMultipleSizesInMemorytrue时,表示内存缓存不允许缓存一张图片的多个尺寸。这个时候用通过FuzzyKeyMemoryCache来构建memoryCache
* downloader表示图片下载器,默认实现为createImageDownloader,最终通过BaseImageDownloader构建下载器,其下载器中重要的两个参数分别为:连接超时时间connectTimeout默认值为5分钟,读取超时时间readTimeout默认值为20分钟。
* decoder 表示图片解码器,默认实现为createImageDecoder,最终通过BaseImageDecoder实现。
* defaultDisplayImageOptions 表示默认参数,最终回调到DisplayImageOptions方法中,里面设计相关的参数初始化。这里就不展开了。

加载配置

我们首先看ApplicationimgaerLoader设置配置的方法。

 ImageLoader.getInstance().init(configuration);

接下来我们继续分析上面的代码是如何将配置应用到ImageLoader中的。首先是ImageLoader.getInstance()实例化一个ImageLoader,通过代码来看实例化的过程:

public static ImageLoader getInstance() {if (instance == null) {synchronized (ImageLoader.class) {if (instance == null) {instance = new ImageLoader();}}}return instance;
}

可以看出来,getInstance就是获取一个ImageLoader实例,运用了一个双重锁的单利模式,很简单,就不做解释了。
重点看init方法。具体在ImageLoader类中的实现如下:

public synchronized void init(ImageLoaderConfiguration configuration) {if (configuration == null) {throw new IllegalArgumentException(ERROR_INIT_CONFIG_WITH_NULL);}if (this.configuration == null) {L.d(LOG_INIT_CONFIG);engine = new ImageLoaderEngine(configuration);this.configuration = configuration;} else {L.w(WARNING_RE_INIT_CONFIG);}}

可以看出来,init的实现也是非常简单的。首先判断传入的configuration参数是否为空,为空就直接抛出一个异常,不为空就判断当前类属性configuration是否为空,类中configuration属性为空时调用ImageLoaderEngine构建engine对象,否则就打印警告日志。所以整个方法中最重要的一个语句就是new ImageLoaderEngine(configuration);。这里首先介绍一个ImageLoaderEngine类的作用。简单描述就是ImageLoaderEngine是任务分发器,负责分发LoadAndDisplayImageTaskProcessAndDisplayImageTask给具体的线程池去执行。具体实现后面会讲到。

加载图片

通过上面两个步骤,imgaeLoder的参数配置已经设置完毕,接下来我们就可以用imageLoader加载图片了。下面是三种加载图片的方式:
加载方式一,异步加载并显示图片到对应的imagerAware上

ImageLoader.getInstance().displayImage(imageUrl,imageView);

加载方式二,异步加载图片并执行回调接口

ImageLoader.getInstance().loadImage(imageUrl,new  ImageLoadingListener() {@Overridepublic void onLoadingStarted(String imageUri, View view) {}@Overridepublic void onLoadingFailed(String imageUri, View view, FailReason failReason) {}@Overridepublic void onLoadingComplete(String imageUri, View view, Bitmap loadedImage) {}

这篇关于imageLoader解析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1233

相关文章

线上Java OOM问题定位与解决方案超详细解析

《线上JavaOOM问题定位与解决方案超详细解析》OOM是JVM抛出的错误,表示内存分配失败,:本文主要介绍线上JavaOOM问题定位与解决方案的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录一、OOM问题核心认知1.1 OOM定义与技术定位1.2 OOM常见类型及技术特征二、OOM问题定位工具

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

深度解析Java @Serial 注解及常见错误案例

《深度解析Java@Serial注解及常见错误案例》Java14引入@Serial注解,用于编译时校验序列化成员,替代传统方式解决运行时错误,适用于Serializable类的方法/字段,需注意签... 目录Java @Serial 注解深度解析1. 注解本质2. 核心作用(1) 主要用途(2) 适用位置3

Java MCP 的鉴权深度解析

《JavaMCP的鉴权深度解析》文章介绍JavaMCP鉴权的实现方式,指出客户端可通过queryString、header或env传递鉴权信息,服务器端支持工具单独鉴权、过滤器集中鉴权及启动时鉴权... 目录一、MCP Client 侧(负责传递,比较简单)(1)常见的 mcpServers json 配置

从原理到实战解析Java Stream 的并行流性能优化

《从原理到实战解析JavaStream的并行流性能优化》本文给大家介绍JavaStream的并行流性能优化:从原理到实战的全攻略,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的... 目录一、并行流的核心原理与适用场景二、性能优化的核心策略1. 合理设置并行度:打破默认阈值2. 避免装箱

Maven中生命周期深度解析与实战指南

《Maven中生命周期深度解析与实战指南》这篇文章主要为大家详细介绍了Maven生命周期实战指南,包含核心概念、阶段详解、SpringBoot特化场景及企业级实践建议,希望对大家有一定的帮助... 目录一、Maven 生命周期哲学二、default生命周期核心阶段详解(高频使用)三、clean生命周期核心阶

深入解析C++ 中std::map内存管理

《深入解析C++中std::map内存管理》文章详解C++std::map内存管理,指出clear()仅删除元素可能不释放底层内存,建议用swap()与空map交换以彻底释放,针对指针类型需手动de... 目录1️、基本清空std::map2️、使用 swap 彻底释放内存3️、map 中存储指针类型的对象

Java Scanner类解析与实战教程

《JavaScanner类解析与实战教程》JavaScanner类(java.util包)是文本输入解析工具,支持基本类型和字符串读取,基于Readable接口与正则分隔符实现,适用于控制台、文件输... 目录一、核心设计与工作原理1.底层依赖2.解析机制A.核心逻辑基于分隔符(delimiter)和模式匹

Java+AI驱动实现PDF文件数据提取与解析

《Java+AI驱动实现PDF文件数据提取与解析》本文将和大家分享一套基于AI的体检报告智能评估方案,详细介绍从PDF上传、内容提取到AI分析、数据存储的全流程自动化实现方法,感兴趣的可以了解下... 目录一、核心流程:从上传到评估的完整链路二、第一步:解析 PDF,提取体检报告内容1. 引入依赖2. 封装

深度解析Python yfinance的核心功能和高级用法

《深度解析Pythonyfinance的核心功能和高级用法》yfinance是一个功能强大且易于使用的Python库,用于从YahooFinance获取金融数据,本教程将深入探讨yfinance的核... 目录yfinance 深度解析教程 (python)1. 简介与安装1.1 什么是 yfinance?