使用 Python 和 LabelMe 实现图片验证码的自动标注功能

2025-01-01 03:50

本文主要是介绍使用 Python 和 LabelMe 实现图片验证码的自动标注功能,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

《使用Python和LabelMe实现图片验证码的自动标注功能》文章介绍了如何使用Python和LabelMe自动标注图片验证码,主要步骤包括图像预处理、OCR识别和生成标注文件,通过结合Pa...

使用 Python 和 LabelMe 实现图片验证码的自动标注

在处理图片验证码时,手动标注是一项耗时且枯燥的工作。本文将介绍如何使用 Python 和 LabelMe 实现图片验证码的自动标注。通过结合 PaddleOCR 实现自动识别,再生成 LabelMe 格式的标注文件,大幅提升工作效率。

环境准备

必备工具

  • Python 3.7+
  • PaddleOCR(支持文字识别)
  • OpenCV(图像处理)
  • LabelMe(标注工具)

安装依赖

使用以下命令安装所需库:

pip install paddleocr labelme opencv-python

实现自动标注

自动标注分为以下几个步骤:

  • 加载图片:读取图片文件,确保格式正确。
  • 图像预处理:对验证码图片进行灰度化和二值化处理,优化识别效果。
  • OCR 识别:使用 PaddleOCR 获取验证码中的文字和位置。
  • 生成标注文件:根据 OCR 结果创建符合 LabelMe 格式的 jsON 文件。

核心代码实现

以下是完整的自动标注脚本

import os
import cv2
from paddleocr import PaddleOCR
def auto_label_image(image_path, output_path):
    # 检查文件是否存在
    if not os.path.exists(image_path):
        print(f"Error: File not found: {image_path}")
        return
    # 加载图像
    image = cv2.imread(image_path)
    if image is None:
        print(f"Error: Failed to load image. Check the file path or format: {image_path}")
    www.chinasem.cn    return
    # 图像预处理
    gray_image = China编程cv2.cvtColor(androidimage, cv2.COLOR_BGR2GRAY)
    _, binary_image = cv2.threshold(gray_image, 128, 255, cv2.THRESH_BINARY)
    # 保存预处理后的图片(可选,用于调试)
    preprocessed_path = os.path.join(output_path, "processed_image.jpg")
    cv2.imwrite(preprocessed_path, binary_image)
    # 初始化 OCR
    ocr = PaddleOCR(use_angle_cls=True, lang='en')
    # OCR 识别
    results = ocr.ocr(preprocessed_path)
    if not results or not results[0]:
        print(f"No text detected in the image: {image_path}")
        return
    # 获取图像尺寸
    image_height, image_width, _ = image.shape
    # 构建标注 JSON
    label_data = {
        "version": "4.5.7",
        "flags": {},
        "shapes": [],
        "imagePath": os.path.basename(image_path),
        "imageData": None,
        "imageHeight": image_height,
        "imageWidth": image_width,
    }
    # 遍历 OCR 结果
    for line in results[0]:
        points = line[0]  # 字符位置 [左上, 右上, 右下, 左下]
        text = line[1][0]  # 识别的文本
        shape = {
            "label": text,
            "points": [points[0], points[2]],  # 左上角和右下角
            "group_id": None,
            "shappythone_type": "rectangle",
            "flags": {}
        }
        label_data["shapes"].append(shape)
    # 保存标注 JSON
    json_path = os.path.join(output_path, os.path.basename(image_path).replace('.jpg', '.json'))
    with open(json_path, 'w') as f:
        import json
        json.dump(label_data, f, indent=4)
    print(f"Saved LabelMe annotation: {json_path}")
# 示例
image_path = r"C:\Users\wangzq\Desktop\images\captcha.jpg"
output_path = "./annotations"
os.makedirs(output_path, exist_ok=True)
auto_label_image(image_path, output_path)

核心逻辑解析

图像预处理

为了提高 OCR 的识别精度,对验证码图片进行灰度化和二值化处理:

gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
_, binary_image = cv2.threshold(gray_image, 128, 255, cv2.THRESH_BINARY)

二值化处理可以去除背景噪声,使字符更加清晰。

OCR 识别

使用 PaddleOCR 对图片进行文字检测和识别,返回检测框和文字内容:

ocr = PaddleOCR(use_angle_cls=True, lang='en')
results = ocr.ocr(preprocessed_path)

如果 results 为空,说明 OCR 未检测到任何文本。

生成标注文件

根据 OCR 结果,生成 LabelMe 格式的标注文件,关键字段包括:

  • shapes:标注框信息,包括位置和对应文字。
  • imageHeight 和 imageWidth:图像的尺寸。

运行结果

  • 输出预处理图片:在指定路径下保存经过预处理的图片(processed_image.jpg)。
  • 生成标注文件:在 output_path 目录下生成与图片同名的 .json 文件。
  • 无文本检测提示:如果未检测到任何文本,提示 No text detected in the image

扩展与优化

模型适配

如果验证码中的字符种类较复杂,可以考虑训练一个专用模型,替代通用的 PaddleOCR。

批量处理

针对多张图片验证码,可以将脚本扩展为批量处理模式:

for image_file in os.listdir(input_folder):
    image_path = os.path.join(input_folder, image_file)
    auto_label_image(image_path, output_path)

标注类型扩展

目前代码仅支持矩形框标注。如果需要支持多边形标注,可以调整 shape_typepolygon 并提供相应点坐标。

总结

本文介绍了如何使用 Python 和 LabelMe 自动标注图片验证码,从图像预处理到生成标注文件的完整流程。通过 PaddleOCR 的结合,可以快速实现验证码字符的自动标注,节省大量时间和精力。

测试

使用 Python 和 LabelMe 实现图片验证码的自动标注功能

运行完脚本,出来json

{
    "version": "4.5.7",
    "flags": {},
    "shapes": [
        {
            "label": "OZLQ",
            "points": [
                [
                    6.0,
                    1.0
                ],
                [
                    68.0,
                    21.0
                ]
            ],
            "group_id": null,
            "shape_type": "rectangle",
            "flags": {}
        }
    ],
    "imagePath": "captcha.png",
    "imageData": null,
    "imageHeight": 22,
    "imageWidth": 76
}
{
    "version": "4.5.7",
    "flags": {},
    "shapes": [
        {
            "label": "3081",
            "points": [
                [
                    6.0,
                    1.0
                ],
                [
                    63.0,
                    21.0
                ]
            ],
            "group_id": null,
            "shape_type": "rectangle",
            "flags": {}
        }
    ],
    "imagePath": "captcha.png",
    "imageData": null,
    "imageHeight": 22,
    "imageWidth": 76
}

目前较为复杂还需要深度研究

到此这篇关于使用 Python 和 LabelMe 实现图片验证码的自动标注的文章就介绍BGWCOwM到这了,更多相关Python图片验证码自动标注内容请搜索编程China编程(www.chinasem.cn)以前的文章或继续浏览下面的相关文章希望大家以后多多支持China编程(www.chinasem.cn)!

这篇关于使用 Python 和 LabelMe 实现图片验证码的自动标注功能的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1152878

相关文章

Python中pywin32 常用窗口操作的实现

《Python中pywin32常用窗口操作的实现》本文主要介绍了Python中pywin32常用窗口操作的实现,pywin32主要的作用是供Python开发者快速调用WindowsAPI的一个... 目录获取窗口句柄获取最前端窗口句柄获取指定坐标处的窗口根据窗口的完整标题匹配获取句柄根据窗口的类别匹配获取句

利用Python打造一个Excel记账模板

《利用Python打造一个Excel记账模板》这篇文章主要为大家详细介绍了如何使用Python打造一个超实用的Excel记账模板,可以帮助大家高效管理财务,迈向财富自由之路,感兴趣的小伙伴快跟随小编一... 目录设置预算百分比超支标红预警记账模板功能介绍基础记账预算管理可视化分析摸鱼时间理财法碎片时间利用财

Java 中的 @SneakyThrows 注解使用方法(简化异常处理的利与弊)

《Java中的@SneakyThrows注解使用方法(简化异常处理的利与弊)》为了简化异常处理,Lombok提供了一个强大的注解@SneakyThrows,本文将详细介绍@SneakyThro... 目录1. @SneakyThrows 简介 1.1 什么是 Lombok?2. @SneakyThrows

在 Spring Boot 中实现异常处理最佳实践

《在SpringBoot中实现异常处理最佳实践》本文介绍如何在SpringBoot中实现异常处理,涵盖核心概念、实现方法、与先前查询的集成、性能分析、常见问题和最佳实践,感兴趣的朋友一起看看吧... 目录一、Spring Boot 异常处理的背景与核心概念1.1 为什么需要异常处理?1.2 Spring B

Python中的Walrus运算符分析示例详解

《Python中的Walrus运算符分析示例详解》Python中的Walrus运算符(:=)是Python3.8引入的一个新特性,允许在表达式中同时赋值和返回值,它的核心作用是减少重复计算,提升代码简... 目录1. 在循环中避免重复计算2. 在条件判断中同时赋值变量3. 在列表推导式或字典推导式中简化逻辑

python处理带有时区的日期和时间数据

《python处理带有时区的日期和时间数据》这篇文章主要为大家详细介绍了如何在Python中使用pytz库处理时区信息,包括获取当前UTC时间,转换为特定时区等,有需要的小伙伴可以参考一下... 目录时区基本信息python datetime使用timezonepandas处理时区数据知识延展时区基本信息

Python位移操作和位运算的实现示例

《Python位移操作和位运算的实现示例》本文主要介绍了Python位移操作和位运算的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 位移操作1.1 左移操作 (<<)1.2 右移操作 (>>)注意事项:2. 位运算2.1

如何在 Spring Boot 中实现 FreeMarker 模板

《如何在SpringBoot中实现FreeMarker模板》FreeMarker是一种功能强大、轻量级的模板引擎,用于在Java应用中生成动态文本输出(如HTML、XML、邮件内容等),本文... 目录什么是 FreeMarker 模板?在 Spring Boot 中实现 FreeMarker 模板1. 环

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义

使用Python和Pyecharts创建交互式地图

《使用Python和Pyecharts创建交互式地图》在数据可视化领域,创建交互式地图是一种强大的方式,可以使受众能够以引人入胜且信息丰富的方式探索地理数据,下面我们看看如何使用Python和Pyec... 目录简介Pyecharts 简介创建上海地图代码说明运行结果总结简介在数据可视化领域,创建交互式地