使用 Python 和 LabelMe 实现图片验证码的自动标注功能

2025-01-01 03:50

本文主要是介绍使用 Python 和 LabelMe 实现图片验证码的自动标注功能,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

《使用Python和LabelMe实现图片验证码的自动标注功能》文章介绍了如何使用Python和LabelMe自动标注图片验证码,主要步骤包括图像预处理、OCR识别和生成标注文件,通过结合Pa...

使用 Python 和 LabelMe 实现图片验证码的自动标注

在处理图片验证码时,手动标注是一项耗时且枯燥的工作。本文将介绍如何使用 Python 和 LabelMe 实现图片验证码的自动标注。通过结合 PaddleOCR 实现自动识别,再生成 LabelMe 格式的标注文件,大幅提升工作效率。

环境准备

必备工具

  • Python 3.7+
  • PaddleOCR(支持文字识别)
  • OpenCV(图像处理)
  • LabelMe(标注工具)

安装依赖

使用以下命令安装所需库:

pip install paddleocr labelme opencv-python

实现自动标注

自动标注分为以下几个步骤:

  • 加载图片:读取图片文件,确保格式正确。
  • 图像预处理:对验证码图片进行灰度化和二值化处理,优化识别效果。
  • OCR 识别:使用 PaddleOCR 获取验证码中的文字和位置。
  • 生成标注文件:根据 OCR 结果创建符合 LabelMe 格式的 jsON 文件。

核心代码实现

以下是完整的自动标注脚本

import os
import cv2
from paddleocr import PaddleOCR
def auto_label_image(image_path, output_path):
    # 检查文件是否存在
    if not os.path.exists(image_path):
        print(f"Error: File not found: {image_path}")
        return
    # 加载图像
    image = cv2.imread(image_path)
    if image is None:
        print(f"Error: Failed to load image. Check the file path or format: {image_path}")
    www.chinasem.cn    return
    # 图像预处理
    gray_image = China编程cv2.cvtColor(androidimage, cv2.COLOR_BGR2GRAY)
    _, binary_image = cv2.threshold(gray_image, 128, 255, cv2.THRESH_BINARY)
    # 保存预处理后的图片(可选,用于调试)
    preprocessed_path = os.path.join(output_path, "processed_image.jpg")
    cv2.imwrite(preprocessed_path, binary_image)
    # 初始化 OCR
    ocr = PaddleOCR(use_angle_cls=True, lang='en')
    # OCR 识别
    results = ocr.ocr(preprocessed_path)
    if not results or not results[0]:
        print(f"No text detected in the image: {image_path}")
        return
    # 获取图像尺寸
    image_height, image_width, _ = image.shape
    # 构建标注 JSON
    label_data = {
        "version": "4.5.7",
        "flags": {},
        "shapes": [],
        "imagePath": os.path.basename(image_path),
        "imageData": None,
        "imageHeight": image_height,
        "imageWidth": image_width,
    }
    # 遍历 OCR 结果
    for line in results[0]:
        points = line[0]  # 字符位置 [左上, 右上, 右下, 左下]
        text = line[1][0]  # 识别的文本
        shape = {
            "label": text,
            "points": [points[0], points[2]],  # 左上角和右下角
            "group_id": None,
            "shappythone_type": "rectangle",
            "flags": {}
        }
        label_data["shapes"].append(shape)
    # 保存标注 JSON
    json_path = os.path.join(output_path, os.path.basename(image_path).replace('.jpg', '.json'))
    with open(json_path, 'w') as f:
        import json
        json.dump(label_data, f, indent=4)
    print(f"Saved LabelMe annotation: {json_path}")
# 示例
image_path = r"C:\Users\wangzq\Desktop\images\captcha.jpg"
output_path = "./annotations"
os.makedirs(output_path, exist_ok=True)
auto_label_image(image_path, output_path)

核心逻辑解析

图像预处理

为了提高 OCR 的识别精度,对验证码图片进行灰度化和二值化处理:

gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
_, binary_image = cv2.threshold(gray_image, 128, 255, cv2.THRESH_BINARY)

二值化处理可以去除背景噪声,使字符更加清晰。

OCR 识别

使用 PaddleOCR 对图片进行文字检测和识别,返回检测框和文字内容:

ocr = PaddleOCR(use_angle_cls=True, lang='en')
results = ocr.ocr(preprocessed_path)

如果 results 为空,说明 OCR 未检测到任何文本。

生成标注文件

根据 OCR 结果,生成 LabelMe 格式的标注文件,关键字段包括:

  • shapes:标注框信息,包括位置和对应文字。
  • imageHeight 和 imageWidth:图像的尺寸。

运行结果

  • 输出预处理图片:在指定路径下保存经过预处理的图片(processed_image.jpg)。
  • 生成标注文件:在 output_path 目录下生成与图片同名的 .json 文件。
  • 无文本检测提示:如果未检测到任何文本,提示 No text detected in the image

扩展与优化

模型适配

如果验证码中的字符种类较复杂,可以考虑训练一个专用模型,替代通用的 PaddleOCR。

批量处理

针对多张图片验证码,可以将脚本扩展为批量处理模式:

for image_file in os.listdir(input_folder):
    image_path = os.path.join(input_folder, image_file)
    auto_label_image(image_path, output_path)

标注类型扩展

目前代码仅支持矩形框标注。如果需要支持多边形标注,可以调整 shape_typepolygon 并提供相应点坐标。

总结

本文介绍了如何使用 Python 和 LabelMe 自动标注图片验证码,从图像预处理到生成标注文件的完整流程。通过 PaddleOCR 的结合,可以快速实现验证码字符的自动标注,节省大量时间和精力。

测试

使用 Python 和 LabelMe 实现图片验证码的自动标注功能

运行完脚本,出来json

{
    "version": "4.5.7",
    "flags": {},
    "shapes": [
        {
            "label": "OZLQ",
            "points": [
                [
                    6.0,
                    1.0
                ],
                [
                    68.0,
                    21.0
                ]
            ],
            "group_id": null,
            "shape_type": "rectangle",
            "flags": {}
        }
    ],
    "imagePath": "captcha.png",
    "imageData": null,
    "imageHeight": 22,
    "imageWidth": 76
}
{
    "version": "4.5.7",
    "flags": {},
    "shapes": [
        {
            "label": "3081",
            "points": [
                [
                    6.0,
                    1.0
                ],
                [
                    63.0,
                    21.0
                ]
            ],
            "group_id": null,
            "shape_type": "rectangle",
            "flags": {}
        }
    ],
    "imagePath": "captcha.png",
    "imageData": null,
    "imageHeight": 22,
    "imageWidth": 76
}

目前较为复杂还需要深度研究

到此这篇关于使用 Python 和 LabelMe 实现图片验证码的自动标注的文章就介绍BGWCOwM到这了,更多相关Python图片验证码自动标注内容请搜索编程China编程(www.chinasem.cn)以前的文章或继续浏览下面的相关文章希望大家以后多多支持China编程(www.chinasem.cn)!

这篇关于使用 Python 和 LabelMe 实现图片验证码的自动标注功能的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1152878

相关文章

C++中assign函数的使用

《C++中assign函数的使用》在C++标准模板库中,std::list等容器都提供了assign成员函数,它比操作符更灵活,支持多种初始化方式,下面就来介绍一下assign的用法,具有一定的参考价... 目录​1.assign的基本功能​​语法​2. 具体用法示例​​​(1) 填充n个相同值​​(2)

Spring StateMachine实现状态机使用示例详解

《SpringStateMachine实现状态机使用示例详解》本文介绍SpringStateMachine实现状态机的步骤,包括依赖导入、枚举定义、状态转移规则配置、上下文管理及服务调用示例,重点解... 目录什么是状态机使用示例什么是状态机状态机是计算机科学中的​​核心建模工具​​,用于描述对象在其生命

Spring Boot 结合 WxJava 实现文章上传微信公众号草稿箱与群发

《SpringBoot结合WxJava实现文章上传微信公众号草稿箱与群发》本文将详细介绍如何使用SpringBoot框架结合WxJava开发工具包,实现文章上传到微信公众号草稿箱以及群发功能,... 目录一、项目环境准备1.1 开发环境1.2 微信公众号准备二、Spring Boot 项目搭建2.1 创建

IntelliJ IDEA2025创建SpringBoot项目的实现步骤

《IntelliJIDEA2025创建SpringBoot项目的实现步骤》本文主要介绍了IntelliJIDEA2025创建SpringBoot项目的实现步骤,文中通过示例代码介绍的非常详细,对大家... 目录一、创建 Spring Boot 项目1. 新建项目2. 基础配置3. 选择依赖4. 生成项目5.

使用Python删除Excel中的行列和单元格示例详解

《使用Python删除Excel中的行列和单元格示例详解》在处理Excel数据时,删除不需要的行、列或单元格是一项常见且必要的操作,本文将使用Python脚本实现对Excel表格的高效自动化处理,感兴... 目录开发环境准备使用 python 删除 Excphpel 表格中的行删除特定行删除空白行删除含指定

深入理解Go语言中二维切片的使用

《深入理解Go语言中二维切片的使用》本文深入讲解了Go语言中二维切片的概念与应用,用于表示矩阵、表格等二维数据结构,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起学习学习吧... 目录引言二维切片的基本概念定义创建二维切片二维切片的操作访问元素修改元素遍历二维切片二维切片的动态调整追加行动态

Linux下删除乱码文件和目录的实现方式

《Linux下删除乱码文件和目录的实现方式》:本文主要介绍Linux下删除乱码文件和目录的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录linux下删除乱码文件和目录方法1方法2总结Linux下删除乱码文件和目录方法1使用ls -i命令找到文件或目录

prometheus如何使用pushgateway监控网路丢包

《prometheus如何使用pushgateway监控网路丢包》:本文主要介绍prometheus如何使用pushgateway监控网路丢包问题,具有很好的参考价值,希望对大家有所帮助,如有错误... 目录监控网路丢包脚本数据图表总结监控网路丢包脚本[root@gtcq-gt-monitor-prome

SpringBoot+EasyExcel实现自定义复杂样式导入导出

《SpringBoot+EasyExcel实现自定义复杂样式导入导出》这篇文章主要为大家详细介绍了SpringBoot如何结果EasyExcel实现自定义复杂样式导入导出功能,文中的示例代码讲解详细,... 目录安装处理自定义导出复杂场景1、列不固定,动态列2、动态下拉3、自定义锁定行/列,添加密码4、合并

mybatis执行insert返回id实现详解

《mybatis执行insert返回id实现详解》MyBatis插入操作默认返回受影响行数,需通过useGeneratedKeys+keyProperty或selectKey获取主键ID,确保主键为自... 目录 两种方式获取自增 ID:1. ​​useGeneratedKeys+keyProperty(推