Go Select的实现

2024-09-08 13:58
文章标签 实现 go select

本文主要是介绍Go Select的实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

select语法总结 select对应的每个case如果有已经准备好的case 则进行chan读写操作;若没有则执行defualt语句;若都没有则阻塞当前goroutine,直到某个chan准备好可读或可写,完成对应的case后退出。

Select的内存布局

了解chanel的实现后对select的语法有个疑问,select如何实现多路复用的,为什么没有在第一个channel操作时阻塞 从而导致后面的case都执行不了。为了解决疑问,对应代码看一下汇编调用了哪些runtime层的函数,发现select语法块被编译器翻译成了以下过程。

创建select–>注册case–>执行select–>释放select

select {case c1 <-1: // non-blockingcase <-c2: // non-blockingdefault: // will do this 
}
runtime.newselect
runtime.selectsend
runtime.selectrecv
runtime.selectdefault
runtime.selectgo

select实际上是个hselect结构体,其中注册的case放到scase中。scase保存有当前case操作的hchan。pollorder指向的是乱序后的scase序号。lockorder中将要保存的是每个case对应的hchan的地址。

type hselect struct {tcase     uint16   // total count of scase[]ncase     uint16   // currently filled scase[]pollorder *uint16  // case poll orderlockorder **hchan  // channel lock orderscase     [1]scase // one per case (in order of appearance)
}
type scase struct {elem        unsafe.Pointer // data elementc           *hchan         // chanpc          uintptr        // return pckind        uint16so          uint16 // vararg of selected boolreceivedp   *bool  // pointer to received bool (recv2)releasetime int64
}

select最后是[1]scase表示select中只保存了一个case的空间,说明select只是个头部,select后面保存了所有的scase,这段Scases的大小就是tcase。在go runtime实现中经常看到这种头部+连续内存的方式。

在这里插入图片描述

select的实现

select创建

在newSelect对象时已经知道了case的数目,并已经分配好上述空间。

func selectsize(size uintptr) uintptr {selsize := unsafe.Sizeof(hselect{}) +(size-1)*unsafe.Sizeof(hselect{}.scase[0]) +size*unsafe.Sizeof(*hselect{}.lockorder) +size*unsafe.Sizeof(*hselect{}.pollorder)return round(selsize, _Int64Align)
}func newselect(sel *hselect, selsize int64, size int32) {if selsize != int64(selectsize(uintptr(size))) {print("runtime: bad select size ", selsize, ", want ", selectsize(uintptr(size)), "\n")throw("bad select size")}sel.tcase = uint16(size)sel.ncase = 0sel.lockorder = (**hchan)(add(unsafe.Pointer(&sel.scase), uintptr(size)*unsafe.Sizeof(hselect{}.scase[0])))sel.pollorder = (*uint16)(add(unsafe.Pointer(sel.lockorder), uintptr(size)*unsafe.Sizeof(*hselect{}.lockorder)))
}

注册case

case channel有三种注册 selectsend selectrecv selectdefault,分别对应着不同的case。他们的注册方式一致,都是ncase+1,然后按照当前的index填充scases域的scase数组的相关字段,主要是用case中的chan和case类型填充c和kind字段。

func selectsendImpl(sel *hselect, c *hchan, pc uintptr, elem unsafe.Pointer, so uintptr) {i := sel.ncasesel.ncase = i + 1cas := (*scase)(add(unsafe.Pointer(&sel.scase), uintptr(i)*unsafe.Sizeof(sel.scase[0])))cas.pc = pccas.c = ccas.so = uint16(so)cas.kind = caseSendcas.elem = elem
}

select执行

pollorder保存的是scase的序号,乱序是为了之后执行时的随机性。

lockorder保存了所有case中channel的地址,这里按照地址大小堆排了一下lockorder对应的这片连续内存。对chan排序是为了去重,保证之后对所有channel上锁时不会重复上锁。

select语句执行时会对整个chanel加锁

select语句会创建select对象 如果放在for循环中长期执行可能会频繁的分配内存

select执行过程总结如下:

  • 通过pollorder的序号,遍历scase找出已经准备好的case。如果有就执行普通的chan读写操作。其中准备好的case是指可以不阻塞完成读写chan的case,或者读已经关闭的chan的case。
  • 如果没有准备好的case,则尝试defualt case。
  • 如果以上都没有,则把当前的G封装好挂到scase所有chan的阻塞链表中,按照chan的操作类型挂到sendq或recvq中。
  • 这个G被某个chan唤醒,遍历scase找到目标case,放弃当前G在其他chan中的等待,返回。
func selectgoImpl(sel *hselect) (uintptr, uint16) {// 对pollorder乱序 填充序号// 对lockorder排序 填充scase中对应的hchan// 通过lockorder遍历每个chan上锁sellock(sel)
loop:// 按照pollorder的顺序遍历scase 查看有没有case已经准备好for i := 0; i < int(sel.ncase); i++ {cas = &scases[pollorder[i]]switch cas.kind {case caseRecv:case caseSend:case caseDefault:dfl = cas}}// 如果没有准备好的scase 则尝试执行defautif dfl != nil {selunlock(sel)cas = dflgoto retc}// 如果没有任何可以执行的case 将当前的G挂到所有case对应的chan// 的等待链表sendq或recvq上 等待被唤醒for i := 0; i < int(sel.ncase); i++ {cas = &scases[pollorder[i]]c = cas.csg := acquireSudog()switch cas.kind {case caseRecv:c.recvq.enqueue(sg)case caseSend:c.sendq.enqueue(sg)}}gp.param = nilgopark(selparkcommit, unsafe.Pointer(sel), "select", traceEvGoBlockSelect|futile, 2)// 被唤醒后又上锁!sellock(sel)sg = (*sudog)(gp.param)gp.param = nil// 唤醒了当前G的sudoG是sg 遍历之前保存的sglist链表匹配for i := int(sel.ncase) - 1; i >= 0; i-- {k = &scases[pollorder[i]]if sg == sglist {cas = k} else {// 若不匹配则收回当前G在这个chan中的排队c = k.cif k.kind == caseSend {c.sendq.dequeueSudoG(sglist)} else {c.recvq.dequeueSudoG(sglist)}}sgnext = sglist.waitlinkreleaseSudog(sglist)sglist = sgnext}selunlock(sel)goto retc
retc:return cas.pc, cas.so
}

原文地址:Go Select的实现

这篇关于Go Select的实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1148306

相关文章

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

让树莓派智能语音助手实现定时提醒功能

最初的时候是想直接在rasa 的chatbot上实现,因为rasa本身是带有remindschedule模块的。不过经过一番折腾后,忽然发现,chatbot上实现的定时,语音助手不一定会有响应。因为,我目前语音助手的代码设置了长时间无应答会结束对话,这样一来,chatbot定时提醒的触发就不会被语音助手获悉。那怎么让语音助手也具有定时提醒功能呢? 我最后选择的方法是用threading.Time

Android实现任意版本设置默认的锁屏壁纸和桌面壁纸(两张壁纸可不一致)

客户有些需求需要设置默认壁纸和锁屏壁纸  在默认情况下 这两个壁纸是相同的  如果需要默认的锁屏壁纸和桌面壁纸不一样 需要额外修改 Android13实现 替换默认桌面壁纸: 将图片文件替换frameworks/base/core/res/res/drawable-nodpi/default_wallpaper.*  (注意不能是bmp格式) 替换默认锁屏壁纸: 将图片资源放入vendo

C#实战|大乐透选号器[6]:实现实时显示已选择的红蓝球数量

哈喽,你好啊,我是雷工。 关于大乐透选号器在前面已经记录了5篇笔记,这是第6篇; 接下来实现实时显示当前选中红球数量,蓝球数量; 以下为练习笔记。 01 效果演示 当选择和取消选择红球或蓝球时,在对应的位置显示实时已选择的红球、蓝球的数量; 02 标签名称 分别设置Label标签名称为:lblRedCount、lblBlueCount

Kubernetes PodSecurityPolicy:PSP能实现的5种主要安全策略

Kubernetes PodSecurityPolicy:PSP能实现的5种主要安全策略 1. 特权模式限制2. 宿主机资源隔离3. 用户和组管理4. 权限提升控制5. SELinux配置 💖The Begin💖点点关注,收藏不迷路💖 Kubernetes的PodSecurityPolicy(PSP)是一个关键的安全特性,它在Pod创建之前实施安全策略,确保P

工厂ERP管理系统实现源码(JAVA)

工厂进销存管理系统是一个集采购管理、仓库管理、生产管理和销售管理于一体的综合解决方案。该系统旨在帮助企业优化流程、提高效率、降低成本,并实时掌握各环节的运营状况。 在采购管理方面,系统能够处理采购订单、供应商管理和采购入库等流程,确保采购过程的透明和高效。仓库管理方面,实现库存的精准管理,包括入库、出库、盘点等操作,确保库存数据的准确性和实时性。 生产管理模块则涵盖了生产计划制定、物料需求计划、

C++——stack、queue的实现及deque的介绍

目录 1.stack与queue的实现 1.1stack的实现  1.2 queue的实现 2.重温vector、list、stack、queue的介绍 2.1 STL标准库中stack和queue的底层结构  3.deque的简单介绍 3.1为什么选择deque作为stack和queue的底层默认容器  3.2 STL中对stack与queue的模拟实现 ①stack模拟实现

基于51单片机的自动转向修复系统的设计与实现

文章目录 前言资料获取设计介绍功能介绍设计清单具体实现截图参考文献设计获取 前言 💗博主介绍:✌全网粉丝10W+,CSDN特邀作者、博客专家、CSDN新星计划导师,一名热衷于单片机技术探索与分享的博主、专注于 精通51/STM32/MSP430/AVR等单片机设计 主要对象是咱们电子相关专业的大学生,希望您们都共创辉煌!✌💗 👇🏻 精彩专栏 推荐订阅👇🏻 单片机