Go Channel的实现

2024-09-08 13:58
文章标签 实现 go channel

本文主要是介绍Go Channel的实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

channel作为goroutine间通信和同步的重要途径,是Go runtime层实现CSP并发模型重要的成员。在不理解底层实现时,经常在使用中对channe相关语法的表现感到疑惑,尤其是select case的行为。因此在了解channel的应用前先看一眼channel的实现。

Channel内存布局

channel是go的内置类型,它可以被存储到变量中,可以作为函数的参数或返回值,它在runtime层对应的数据结构式hchan。hchan维护了两个链表,recvq是因读这个chan而阻塞的G,sendq则是因写这个chan而阻塞的G。waitq队列中每个元素的数据结构为sudog,其中elem用于保存数据。

type hchan struct {qcount   uint           // total data in the queuedataqsiz uint           // size of the circular queuebuf      unsafe.Pointer // points to an array of dataqsiz elementselemsize uint16closed   uint32elemtype *_type // element typesendx    uint   // send indexrecvx    uint   // receive indexrecvq    waitq  // list of recv waiterssendq    waitq  // list of send waiterslock     mutex
}type sudog struct {g           *gselectdone  *uint32next        *sudogprev        *sudogelem        unsafe.Pointer // data elementreleasetime int64nrelease    int32  // -1 for acquirewaitlink    *sudog // g.waiting list
}

hchan只是channel的头部,头部后面的一段内存连续的数组将作为channel的缓冲区,即用于存放channel数据的环形队列。qcount datasize分别描述了缓冲区当前使用量和容量。若channel是无缓冲的,则size是0,就没有这个环形队列了。
在这里插入图片描述
创建chan需要知道数据类型和缓冲区大小。对应上面的结构图newarray将生成这个环形队列。之所以要分开指针类型缓冲区主要是为了区分gc操作,需要将它设置为flagNoScan。并且指针大小固定,可以跟hchan头部一起分配内存,不需要先new(hchan)newarry

声明但不make初始化的chan是nil chan。读写nil chan会阻塞,关闭nil chan会panic。

func makechan(t *chantype, size int64) *hchan {elem := t.elemvar c *hchanif elem.kind&kindNoPointers != 0 || size == 0 {c = (*hchan)(mallocgc(hchanSize+uintptr(size)*uintptr(elem.size), nil, flagNoScan))if size > 0 && elem.size != 0 {c.buf = add(unsafe.Pointer(c), hchanSize)} else {c.buf = unsafe.Pointer(c)}} else {c = new(hchan)c.buf = newarray(elem, uintptr(size))}c.elemsize = uint16(elem.size)c.elemtype = elemc.dataqsiz = uint(size)return c
}

Channel操作

从实现中可见读写chan都要lock,这跟读写共享内存一样都有lock的开销。

数据在chan中的传递方向从chansend开始从入参最终写入recvq中的goroutine的数据域,这中间如果发生阻塞可能先写入sendq中goroutine的数据域等待中转。

从gopark返回后sudog对象可重用。

同步读写

写channel c<-x 调用runtime.chansend。读channel <-c 调用runtime.chanrecv。总结同步读写的过程就是:

  • 写chan时优先检查recvq中有没有等待读chan的goroutine,若有从recvq中出队sudoG。syncsend将要写入chan的数据ep复制给刚出队的sudoG的elem域。通过goready唤醒接收者G,状态设置为_Grunnable,之后放进P本地待运行队列。之后这个读取到数据的G可以再次被P调度了。
  • 写chan时如果没有G等待读,当前G因等待写而阻塞。这时创建或获取acquireSudog,封装上要写入的数据进入sendq队列。同时当前Ggopark休眠等待被唤醒。
  • 读chan时优先唤醒sendq中等待写的goroutine,并从中获取数据;若没人写则将自己挂到recvq中等待唤醒。
func chansend(t *chantype, c *hchan, ep unsafe.Pointer, 
block bool, callerpc uintptr) bool {
...lock(&c.lock)if c.dataqsiz == 0 { // synchronous channelsg := c.recvq.dequeue()if sg != nil { // found a waiting receiverunlock(&c.lock)recvg := sg.gsyncsend(c, sg, ep)goready(recvg, 3)return true}// no receiver available: block on this channel.mysg := acquireSudog()mysg.elem = ep  c.sendq.enqueue(mysg)goparkunlock(&c.lock, "chan send", traceEvGoBlockSend, 3)// someone woke us up.releaseSudog(mysg)return true}
}
func chanrecv(t *chantype, c *hchan, ep unsafe.Pointer, block bool) 
(selected, received bool) {if c.dataqsiz == 0 { // synchronous channelsg := c.sendq.dequeue()if sg != nil {unlock(&c.lock)typedmemmove(c.elemtype, ep, sg.elem)gp.param = unsafe.Pointer(sg)goready(gp, 3)return true, true}// no sender available: block on this channel.mysg := acquireSudog()mysg.elem = epc.recvq.enqueue(mysg)goparkunlock(&c.lock, "chan receive", traceEvGoBlockRecv, 3)// someone woke us upreleaseSudog(mysg)return recvclosed(c, ep)}
}

异步读写

异步与同步的区别就是读写时会优先检查缓冲区有没有数据读或有没有空间写。并且真正读写chan后会发生缓冲区变化,这时可能之前阻塞的goroutine有机会写和读了,所以要尝试唤醒它们。 总结过程:

  • 写chan时缓冲区已满,则将当前G和数据封装好放入sendq队列中等待写入,同时挂起gopark当前goroutine。若缓冲区未满,则直接将数据写入缓冲区,并更新缓冲区最新数据的index以及qcount。同时尝试从recvq中唤醒goready一个之前因为缓冲区无数据可读而阻塞的等待读的goroutine。
  • 读chan时首先看缓冲区有没有数据,若有则直接读取,并尝试唤醒一个之前因为缓冲区满而阻塞的等待写的goroutine,让它有机会写数据。若无数据可读则入队recvq。
func chansend(t *chantype, c *hchan, ep unsafe.Pointer, block bool, callerpc uintptr) bool {// asynchronous channelvar t1 int64for futile := byte(0); c.qcount >= c.dataqsiz; futile = traceFutileWakeup {mysg := acquireSudog()c.sendq.enqueue(mysg)goparkunlock(&c.lock, "chan send", traceEvGoBlockSend|futile, 3)// someone woke us up - try againreleaseSudog(mysg)}// write our data into the channel buffertypedmemmove(c.elemtype, chanbuf(c, c.sendx), ep)c.sendx++if c.sendx == c.dataqsiz {c.sendx = 0}c.qcount++// wake up a waiting receiversg := c.recvq.dequeue()if sg != nil {goready(sg.g, 3)} return true
}
func chanrecv(t *chantype, c *hchan, ep unsafe.Pointer, block bool) 
(selected, received bool) {// asynchronous channelfor futile := byte(0); c.qcount <= 0; futile = traceFutileWakeup {mysg := acquireSudog()c.recvq.enqueue(mysg)goparkunlock(&c.lock, "chan receive", traceEvGoBlockRecv|futile, 3)// someone woke us up - try againreleaseSudog(mysg)}typedmemmove(c.elemtype, ep, chanbuf(c, c.recvx))memclr(chanbuf(c, c.recvx), uintptr(c.elemsize))c.recvx++if c.recvx == c.dataqsiz {c.recvx = 0}c.qcount--// ping a sender now that there is spacesg := c.sendq.dequeue()if sg != nil {goready(sg.g, 3)}return true, true
}

关闭

通过goready唤醒recvq中等待读的goroutine,之后唤醒所有sendq中等待写的goroutine。因此close chan相当于解除所有因它阻塞的gouroutine的阻塞。

func closechan(c *hchan) {c.closed = 1// release all readersfor {sg := c.recvq.dequeue()if sg == nil {break}...goready(gp, 3)}// release all writersfor {sg := c.sendq.dequeue()if sg == nil {break}...goready(gp, 3)}
}

写closed chan或关闭 closed chan会导致panic。读closed chan永远不会阻塞,会返回一个通道数据类型的零值,返回给函数的参数ep。

所以通常在close chan时需要通过读操作来判断chan是否关闭。

if v, open := <- c; !open {// chan is closed
}

Happens before

在go memory model 里讲了happens-before问题很有意思。其中有一些跟chan相关的同步规则可以解释一些一直以来的疑问,记录如下:

  • 对带缓冲chan的写操作 happens-before相应chan的读操作
  • 关闭chan happens-before 从该chan读最后的返回值0
  • 不带缓冲的chan的读操作 happens-before相应chan的写操作
var c = make(chan int, 10)
var a string
func f() {a = "hello, world"  //(1)c <- 0  // (2)
}func main() {go f()<- c  //(3)print(a)  //(4)
}

(1) happens-before(2) (3) happens-before(4),再根据规则可知(2) happens(3)。因此(1)happens-before(4),这段代码没有问题,肯定会输出hello world。

var c = make(chan int)
var a string
func f() {a = "hello, world"  //(1)<-c  // (2)
}func main() {go f()c <- 0  //(3)print(a)  //(4)
}

同样根据规则三可知(2)happens-before(3) 最终可以保证(1) happens-before(4)。若c改成待缓冲的chan,则结果将不再有任何同步保证使得(2) happens-before(3)。

原文地址:Go Channel的实现

这篇关于Go Channel的实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1148305

相关文章

Java实现检查多个时间段是否有重合

《Java实现检查多个时间段是否有重合》这篇文章主要为大家详细介绍了如何使用Java实现检查多个时间段是否有重合,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录流程概述步骤详解China编程步骤1:定义时间段类步骤2:添加时间段步骤3:检查时间段是否有重合步骤4:输出结果示例代码结语作

使用C++实现链表元素的反转

《使用C++实现链表元素的反转》反转链表是链表操作中一个经典的问题,也是面试中常见的考题,本文将从思路到实现一步步地讲解如何实现链表的反转,帮助初学者理解这一操作,我们将使用C++代码演示具体实现,同... 目录问题定义思路分析代码实现带头节点的链表代码讲解其他实现方式时间和空间复杂度分析总结问题定义给定

Java覆盖第三方jar包中的某一个类的实现方法

《Java覆盖第三方jar包中的某一个类的实现方法》在我们日常的开发中,经常需要使用第三方的jar包,有时候我们会发现第三方的jar包中的某一个类有问题,或者我们需要定制化修改其中的逻辑,那么应该如何... 目录一、需求描述二、示例描述三、操作步骤四、验证结果五、实现原理一、需求描述需求描述如下:需要在

如何使用Java实现请求deepseek

《如何使用Java实现请求deepseek》这篇文章主要为大家详细介绍了如何使用Java实现请求deepseek功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1.deepseek的api创建2.Java实现请求deepseek2.1 pom文件2.2 json转化文件2.2

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

如何通过Python实现一个消息队列

《如何通过Python实现一个消息队列》这篇文章主要为大家详细介绍了如何通过Python实现一个简单的消息队列,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录如何通过 python 实现消息队列如何把 http 请求放在队列中执行1. 使用 queue.Queue 和 reque

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

使用Python快速实现链接转word文档

《使用Python快速实现链接转word文档》这篇文章主要为大家详细介绍了如何使用Python快速实现链接转word文档功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 演示代码展示from newspaper import Articlefrom docx import

前端原生js实现拖拽排课效果实例

《前端原生js实现拖拽排课效果实例》:本文主要介绍如何实现一个简单的课程表拖拽功能,通过HTML、CSS和JavaScript的配合,我们实现了课程项的拖拽、放置和显示功能,文中通过实例代码介绍的... 目录1. 效果展示2. 效果分析2.1 关键点2.2 实现方法3. 代码实现3.1 html部分3.2