LibSVM学习(五)——分界线的输出

2024-09-08 12:08
文章标签 输出 学习 libsvm 分界线

本文主要是介绍LibSVM学习(五)——分界线的输出,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  对于学习SVM人来说,要判断SVM效果,以图形的方式输出的分解线是最直观的。LibSVM自带了一个可视化的程序svm-toy,用来输出类之间的分界线。他是先把样本文件载入,然后进行训练,通过对每个像素点的坐标进行判断,看属于哪一类,就附上那类的颜色,从而使类与类之间形成分割线。我们这一节不讨论svm-toy怎么使用,因为这个是“傻瓜”式的,没什么好讨论的。这一节我们主要探讨怎么结合训练结果文件,自己编程输出分界线。

       为什么说是分界线呢,其实严格说来是分解超平面,但是我们为了能直观用绘图工具绘(比如matlab)出图来只能输出具有二维(也就是特征数是2)的样本分界,因此也就成了线了。好了,闲话少说,进入正题。要绘分界线,就要用到训练结果,我们在第二节和第三节都讨论了,训练结果(或训练模型)文件怎么输出,但是,没怎么详细说明怎么使用训练结果,现在具体说明。下面是两个模型文件: 

                  5.1               5.2

                          图5.1 两类模型文件                                 图5.2 三类模型文件

 

     从图5.1和5.2比较可以看出,两类只存在一个分类器,因此每个支持向量对应的系数α(也就是SV的第一排),也只有 1个(当然,截距rho也只有一个)。这种情况最简单,只要把相应的支持向量和α的值带入方程: 

 5.3                                (5.1)

 

     找到为0的解,就是分界点了。(式中,有些文献是+b,libSVM采用的是-b)

    对于三类或多类时,情况就比较复杂。我们原来讨论过,对于类数k>2的情况,分类器个数为k×(k-1)/2个,那么对应的b值(也就是rho)应该也是k×(k-1)/2个。那么每个支持向量对应的系数α是多少呢?是k-1个,因为每个支持向量(sv)与其他每个类都有一个系数相对应。当然,和有的类对应时可能不是标准支持向量(0<alpha[i]<C),但是至少和其中一个类对应是标准的。我们先看一下图5.2的SV的数据结构: 

 

各nSV对应的αiyi

特征1

特征2

类0(label为-1)

前13个

0 - V - 1

0 - V - 2

 

1:0.297595

 

2:1.197805

0.4800095239454689

0.2016577869168293

类1(label为0)

中间9个

1 - V - 0

1 - V - 2

 

1:3.621706

 

2:1.263636

-0.6580578158072528

0.7036762846823739

类2(label为1)

后8个

2 - V - 0

2 - V - 1

 

1:8.296066

 

2:7.225341

-0.7056286598529473

-0.6494097661702236

    从表中,可以看出,每个支持向量(SV)都有相应的k-1(这里的k为3)个α,后面就是向量的数据。因此,输出分界线时,只要认清系数的位置就可以了。如要输出类0和类2之间的分界线,就要带入类0的第二列和类2的第1列中的α。 

   这里需要重点说明的是:文件输出的不是单纯的α,实际上是αiyi(这里的yi是在训练时的+1或-1,而不是原始样本的label),因此在带入5.1式时,不需要判断yi的值了。

      了解了数据结构以后,就是求解方程。5.1式是个多元方程(这和x的维数有关,这里讨论的是2维的,因此是二元方程),而只有一个等式,因此要对其中一个参数做定常处理。先求出其中一个参数的范围,不妨设为x[0](在绘图时相当于x坐标轴)x_max和x_min,然后分成100等分,对每一个节点处

      x[0]= i×(x_max- x_min)/100+ x_min

      这样,x[0]就相当于固定了,然后代入5.1式求x[1](也就是y)。这就转化成了一元方程,可以采用传统的数学解法,这里,我采用的是网络遍历法。也就是对x[1]也分成100分进行遍历,把节点处的x[1]:

       x[1]= j×(y_max- y_min)/100+ y_min

     代入5.1式,看是否接近于0,如果接近0,说明此点是边界点,然后输出坐标就可以了。

                                                 for(i = 0; i < 100; i ++)

                                                        for(j = 0; j < 100; j ++)

                                                        {

                                                               X[0] = x[0]i;

                                                               X[1] = x[1]j;

                                                             if( 5.4)

 

                                                              cout << X[0] << “ “ <<  X[1] <<endl;

                                                        }

 

    分界点坐标输出以后,就可以用matlab把分界线绘制出来了。

                                                             

这篇关于LibSVM学习(五)——分界线的输出的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1148064

相关文章

C++中实现调试日志输出

《C++中实现调试日志输出》在C++编程中,调试日志对于定位问题和优化代码至关重要,本文将介绍几种常用的调试日志输出方法,并教你如何在日志中添加时间戳,希望对大家有所帮助... 目录1. 使用 #ifdef _DEBUG 宏2. 加入时间戳:精确到毫秒3.Windows 和 MFC 中的调试日志方法MFC

Python使用Colorama库美化终端输出的操作示例

《Python使用Colorama库美化终端输出的操作示例》在开发命令行工具或调试程序时,我们可能会希望通过颜色来区分重要信息,比如警告、错误、提示等,而Colorama是一个简单易用的Python库... 目录python Colorama 库详解:终端输出美化的神器1. Colorama 是什么?2.

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识